
Hey, Your Secrets Leaked! Detecting and Characterizing Secret Leakage in the Wild

Jiawei Zhou∗†§, Zidong Zhang†§, Lingyun Ying†B, Huajun Chai†, Jiuxin Cao∗B, Haixin Duan‡
∗Southeast University, Email: jiawei_zhou@seu.edu.cn, jx.cao@seu.edu.cn

†QI-ANXIN Technology Research Institute, Email: {zhangzidong, yinglingyun, chaihuajun}@qianxin.com
‡Quancheng Lab; Tsinghua University; Tsinghua University-QI-ANXIN Group JCNS, Email: duanhx@tsinghua.edu.cn

Abstract—Secrets, whether structured like API keys or un-
structured like passwords, are essential for securing applica-
tions and services. However, the growing use of open-source
projects and rapid development cycles has amplified the risk
of secret leakage. Current detection tools suffer from high
false positive rates and low recall due to simplistic methods
like regular expressions and entropy checks, often missing
unstructured secrets or mislabeling non-sensitive data.

In this paper, we introduce KEYSENTINEL, an advanced
automated secret detection tool that addresses these limitations
through machine learning, semantic analysis, and prefix match-
ing. To evaluate KEYSENTINEL, we created the first cross-
platform benchmark with 11,826 labeled secrets in 1,806,530
files across GitHub, PyPI, and WeChat. We compare KEY-
SENTINEL with six currently available tools. The results show
KEYSENTINEL achieves state-of-the-art performance, with
precision (91.18%), recall (81.71%), and an F1 score (0.86),
surpassing industry-standard tools and significantly reducing
false positives. It also outperforms large language models like
GPT-4 and o1 in accuracy and cost-effectiveness.

Besides, we conduct a large-scale measurement study,
analyzing 80,330,098 files from GitHub, PyPI, and WeChat.
We found that up to 30% of projects are at risk of secret
leaks. Furthermore, we also scan the codebase of an IT
company to assess real-world secret leakage risks. Our findings
underscore the pervasive nature of secret leaks and highlight
the urgent need for enhanced secret management practices
across platforms.

1. Introduction

In modern software development pipelines, secrets (e.g.,
API keys, tokens, credentials, and passwords) are employed
for access control and authentication across various ser-
vices. Typically, an application may require dozens or even
hundreds of these secrets. The large volume of secrets
requires stringent safeguards and secure usage to prevent
unauthorized disclosure. However, the widespread use of
cloud services and rapid development cycles have signifi-
cantly heightened the risk of secret leakage, as developers

§Both authors contributed equally to this research.
B Co-corresponding authors.

commonly hard-code secrets in files. For instance, Syman-
tec [28] reported that 1,859 popular iOS and Android apps
contained hard-coded AWS credentials, with 77% of the
credentials being valid access tokens.

Similarly, Legit Security [9] reported that an average of
12 secrets were submitted per 100 repositories each week.
Additionally, emerging artificial intelligence (AI) applica-
tions also face secret leakage issues. Permiso.io [26] warned
that exposed API keys in hosted AI models could create
security vulnerabilities, leading to unauthorized access and
exploitation.

Thus, secret leakage has become a critical security con-
cern. John Shier [33] reported that compromised secrets
were the primary cause of cyber attacks in early 2023,
accounting for 50% of root causes. More seriously, the
exposure of these secrets usually results in data breaches
and financial losses. For example, the Internet Archive [27]
experienced a breach due to a publicly accessible GitLab au-
thentication token, which remained exposed for nearly two
years and allowed hackers to compromise its user database.
Furthermore, IBM [10] estimated that breaches caused by
credential compromises cost an average of $4.62 million and
took nearly 11 months to address. Thus, protecting secrets
from leakage is essential for safeguarding digital assets and
reducing security risks.

However, precisely detecting leaked secrets is very chal-
lenging due to their diverse forms, such as API keys and
passwords, as well as their presence across platforms, file
types, and unstructured contexts. Tools like Gitleaks [38]
and TruffleHog [40] rely on basic methods such as regular
expressions, entropy checks, and simple whitelists, often
leading to severe false positives by misidentifying non-secret
strings as secrets. Meanwhile, machine learning approaches
also struggle with precision-recall trade-offs in real-world
environments due to fixed attributes and predefined classifi-
cations. While prior research [74], [68], [62], [72] has made
efforts in secret leakage detection, these efforts remain con-
strained by platform, secret type, and text format, resulting
in only modest accuracy improvements. Furthermore, even
after leaks are discovered, complete removal is difficult due
to secondary storage like caches and mirrors [34], under-
scoring the urgent need for accurate and timely detection in
diverse environments.

Moreover, the absence of high-quality benchmarks
makes comprehensive evaluation challenging. The existing
dataset [56], primarily derived from pre-filtered GitHub
repositories, shows evident platform and tool biases. Its lack
of cross-platform diversity restricts the ability to conduct
a comprehensive evaluation across different file types and
environments.
Our Approach. We introduce KEYSENTINEL, a secret de-
tection tool that leverages advanced extraction and filtering
techniques. In the secret extraction phase, we design 910
regular expressions to capture a wide range of secrets,
including structured secrets with fixed formats and unstruc-
tured secrets requiring prefix-based extraction. Additionally,
we use string parsing to filter out incomplete strings and
develop several fine filters based on secret characteristics to
screen out non-secret strings.

Specifically, we define two main types of secrets:
machine-generated secrets are random without semantic
meaning, while human-chosen secrets often have recog-
nizable content. For machine-generated secrets, we apply
granular semantic analysis to exclude strings with semantic
meaning or regular patterns, while for human-chosen se-
crets, we use machine learning to identify non-secret strings.
Furthermore, we adopt heuristic-based prefix analysis to
minimize false positives from prefix matching. Eventually,
KEYSENTINEL achieves 91.18% precision and an F1 score
of 0.86.
Dataset & Benchmark. To measure secret leakage across
different platforms, we collected a cross-platform dataset
that includes 80,330,098 files from 4,280 GitHub reposi-
tories, 668,847 PyPI packages, and 41,719 WeChat mini-
programs (MPs). Furthermore, based on this raw dataset,
we build a benchmark dataset with 11,826 manually labeled
secrets, scattered across 1,806,530 files (608,945 files on
GitHub, 634,721 on PyPI, and 562,864 on WeChat).
Evaluation. We compare our tool with six previous tools
in terms of secret detection. The results show that our
tool performs best, achieving superior precision (91.18%),
recall (81.71%), and an F1 score of 0.86. Among the other
tools, Gitleaks performs best, with an overall F1 score of
0.37 and precision of 26.60%. It performs reasonably well
on GitHub (F1 score of 0.59, precision of 61.29%), but
struggles on PyPI and WeChat (F1 scores of 0.26 and
0.16). In contrast, KEYSENTINEL consistently achieves F1
scores above 0.8 and precision at around 90% across all
platforms, significantly reducing false positives while main-
taining strong robustness. Additionally, our ablation experi-
ments demonstrate that each filtering strategy is effective in
secret detection. Finally, we compared KEYSENTINEL with
powerful large language models (LLMs), specifically GPT-
4 and o1. GPT-4 achieved an F1 score of 0.41, while o1
scored 0.63. However, both had higher false positives and
longer processing times than KEYSENTINEL.
Measurement. We conduct a large-scale study to assess
secret leaks across three major platforms (i.e., GitHub,
PyPI, and WeChat) covering a total of 80 million files. Our
analysis found that 24.78% of 4,280 GitHub repositories,
7.47% of 668,847 PyPI packages, and 30.08% of 41,719

WeChat MPs exposed secrets. Typically, secret leaks are
found in source code files like .py and .js, and private key
files such as .key. However, we found that secret leakage is
not limited to these file types. Various text and configuration
files, including .config, and .log, also exhibit plenty of secret
leaks. Notably, we further tracked the handling of secrets
and version updates in PyPI packages. The results show
that 85.91% of PyPI packages did not remove secrets during
version updates, suggesting that the presence of secrets was
not detected. Only 4.09% removed secrets, while 8.84%
even added more secrets.

Furthermore, by applying KEYSENTINEL to a coop-
erated IT company’s internal codebase, we detected 858
leaked secrets across 256 of 107,625 files in 7 projects
and further identified 38 valid secrets out of 104 examined
by developer communication. These findings underscore the
widespread issue of secret leakage in both open-source and
private codebases. We further discuss the main cause of
secret leakage and propose some best practices to mitigate
these risks.

Responsible Disclosure. We have responsibly disclosed our
findings and sent 3,906 disclosure emails. At the time of
writing, we have received 205 responses, with 12 confirma-
tions of valid secret exposure.

Contributions. The main contributions of this paper are:
• New Benchmark: We develop the first cross-platform

benchmark featuring 11,826 label real-world secrets,
leveraging a comprehensive dataset of over 18 million
raw project files compiled from GitHub, PyPI, and
WeChat, which enables more precise evaluations of ex-
isting secret detection tools.

• A SoTA Tool: We have designed and developed a novel
secret detection tool that achieves state-of-the-art per-
formance compared to existing mainstream tools and
LLMs (GPT-4 and o1), featuring a precision of 91.18%,
a recall of 81.71%, and an F1 score of 0.86, making it
suitable for use in various environments.

• Large-scale Measurement: We conduct the first large-
scale, cross-platform analysis of secret leakage risk in
the wild, examining over 80 million files across three
major platforms, revealing varying leakage rates on
a per-project basis: GitHub (24.78%), PyPI (7.47%),
and WeChat (30.08%). Additionally, we assess secret
leakage in a real-world IT company with permission,
confirming 38 valid secrets out of 104 investigated,
uncovering issues like secrets in log files and third-
party template leaks, which lead to specific mitigation
recommendations.

Open Source. We will open-source our tool and benchmark
on GitHub [53].

Roadmap. The remainder of this paper is organized as fol-
lows. Section 2 reviews the current state of secret detection
technologies and related work. Section 3 describes our new
secret dataset and the corresponding benchmark. Section 4
presents the detailed design of KEYSENTINEL, and Section
5 gives its prototype implementation. Section 6 evaluates

2

the performance of KEYSENTINEL against other popular
tools using our benchmark dataset. Section 7 discusses the
results of various measurements, including insights from
secret detection in a real IT company. Section 8 discusses
the limitations of our work, the lessons learned, and the
good practices. Finally, Section 9 concludes this paper.

2. Background & Related Work

In this section, we provide an overview of secret defini-
tions and the related work in secret detection, benchmarking,
and leakage measurement.

2.1. Background

Secret. In software development, we categorize all cre-
dentials used for authentication, database access, API in-
teractions, and similar functions as secrets. These secrets
are divided into two main types: machine-generated [72]
and human-chosen [67], [75] secrets. Specifically, machine-
generated secrets are created with cryptographic algorithms
or randomization techniques, making them inherently ran-
dom and devoid of semantic meaning. In contrast, human-
chosen secrets are selected by individuals and often include
recognizable or meaningful information.

Additionally, machine-generated secrets can be further
categorized as either structured or unstructured based on
their format. For instance, Google API keys typically start
with AIza [74], and private keys are often identified by the
marker -----BEGIN [label]----- [64], indicating specific
patterns. In contrast, some machine-generated secrets, like
the fixed 30-character alphanumeric OpenCage geocoding
API key [31], are entirely random and lack discernible struc-
ture. Besides, we treat human-chosen secrets as unstructured
since they are selected by individuals and often contain
meaningful information.

Leaked Secret. Leaked secrets, as defined in this study,
are hard-coded credentials found in any non-binary file
that could pose potential risks. Previous research on secret
leakage has primarily focused on source code files or spe-
cific types of private keys and certificate files [62], [72],
[74], [82]. However, our findings reveal that secrets are not
limited to these sources and can also appear in comments,
documentation, and other non-binary files. Secrets embed-
ded in binary files are not part of this scope. Plus, we also
excluded non-English files.

2.2. Secret Detection

Detection Tools. There are lots of research efforts about se-
cret detection [72], [61], [71], [55]. Rahman et al. conducted
an industrial case study on the limitations of secret detection
tools. They found that these tools often have high false
positive rates, which reduces developer trust and leads to
persistent secret leaks [71]. To compare existing tools more
effectively, we adopted the criteria established by Basak et

al. [55]. Based on tool availability, popularity, and the ability
to scan local files, we selected several widely used and
reliable tools. These include Ggshield [37], Gitleaks [38],
TruffleHog [40], Repo-supervisor [35], Git-secret [36], and
Whispers [39]. Furthermore, we summarized the reviews of
these tools, which are presented in Table 1. First, different
tools have varying input and output formats. For example,
Repo-supervisor lacks line number support, which makes
localization analysis difficult. Whispers introduces noise by
analyzing file paths and sensitive functions. Second, some
tools have become outdated and lack maintenance and up-
dates. For instance, Repo-supervisor and Whispers have not
been updated for over a year. Moreover, most tools rely on
basic entropy filtering and whitelisting, which limits their
detection effectiveness.

To better understand secret detection, we focus on two
main processes: secret extraction and secret filtering, along
with related works.

Secret Extraction. Secret extraction involves identifying
potential secrets in various files. Most tools use regular
expressions and entropy checks to extract secrets [74]. Meli
et al. [70] combined regular expressions and filters, achiev-
ing over 90% accuracy. However, their approach primarily
focused on structured secrets and overlooked unstructured
ones. Zuo et al. [82] applied programmatic analysis to
source code but struggled with other file types. Tools like
Gitleaks [24] and TruffleHog [25] relied on prefix matching,
which often results in high false positive rates.

Secret Filter. As not all extracted strings represent true
secrets, secret filtering is necessary to isolate genuine se-
crets from extracted candidates. Meli et al. [70] used en-
tropy and pattern-based filters but found limited adaptability
outside specific conditions. Saha et al. [72] developed a
voting classifier combining multiple algorithms to reduce
false positives, but their dataset was limited [56], restricting
real-world application. Wen et al. [76] used reinforcement
learning to assess file sensitivity, focusing on speed over
comprehensive benchmarking. In addition, human-generated
passwords pose challenges for entropy-based filters because
they often lack discernible patterns. Feng et al. [62] used
TextCNN models with semantic analysis but faced misclas-
sification issues with diverse file types.

2.3. Secret Benchmark Dataset

Table 2 summarizes current benchmark datasets. The
dataset created by Sinha et al. [74] contains 84 GitHub
repositories, focusing on AWS credentials, but is limited
in both type and volume. Similarly, Saha’s dataset [72]
includes around 700 API keys, tokens, and passwords from
300 repositories, yet remains small in scale. Neither dataset
is publicly available by now. In contrast, SecretBench is
the only public dataset [56], which scanned GitHub using
Gitleaks and TruffleHog with a set of 761 regular expres-
sions. However, it exhibits platform and tool biases due
to its exclusive focus on GitHub and reliance on specific
tools [55].

3

TABLE 1: Comparison of secret detection tools.

Tool Line Num. Multi-factor Still Maintained Public Regex (#) # Stars Filtering Method Non-secret Detections

Ggshield ✓ ✓ ✓ ✗ 1,500 Not disclosed Username, port, etc.
TruffleHog ✓ ✓ ✓ ✓ (736) 13,200 Entropy -
Repo-supervisor ✗ ✗ ✗ ✗ 631 Whitelist, Entropy -
Gitleaks ✓ ✗ ✓ ✓ (166) 14,600 Whitelist, Entropy -
Whispers ✓ ✗ ✗ ✓ (19) 468 Whitelist, Similarity File path, threat function
Git-secret ✓ ✗ ✓ ✗ 11,800 Not disclosed -

TABLE 2: Comparison of secret benchmark datasets.

Benchmark Machine
Secret*

Human
Secret**

Public
Accessible

Manually
Labeled

Not
Pre-filtered

Cross
Platform

Target File Extraction Tool # True
Secret

Sinha’s (2015) ✓ ✗ ✗ - - ✗ Source code - -
Saha’s (2020) ✓ ✓ ✗ ✓ ✗ ✗ Source code Saha’s customized tool 700
SecretBench (2023) ✓ ✓ ✓ ✓ ✗ ✗ Non-binary file Gitleaks & TruffleHog 4,014
Ours ✓ ✓ ✓ ✓ ✓ ✓ Non-binary file All tools from Table 1 7,062

* Machine-generated secret; ** Human-chosen secret.

Despite these efforts, current datasets often suffer from
a lack of diversity, limited real-world applicability, and
insufficient cross-platform representation. In summary, they
exhibit three main limitations:
• I. Pre-filtering Bias: Previous dataset samples are biased

due to pre-filtering with specific tools or keywords (e.g.,
TruffleHog). Thus, they cannot accurately represent the
true distribution of secrets in the wild.

• II. Tool Bias: Dataset extraction relies on specific tools
like Gitleaks and TruffleHog. It creates a bias toward the
secrets detected by these tools. As a result, the dataset
becomes unfair to others [55]. Additionally, the approach
limits the coverage of secrets.

• III. Platform Bias: Most benchmarks focus on a single
platform (e.g., GitHub), lacking cross-platform data. It
restricts comprehensive evaluation, as different platforms
have unique secret usage (leakage) patterns.

2.4. Secret Leakage Measurement

Secret leakage across various platforms has become a
significant issue, prompting increased attention to measure-
ment efforts. Meli et al. [70] conducted the first large-scale
measurement of GitHub, creating optimized regular expres-
sions and filters for near real-time detection. Dahlmanns et
al. [60] extended Meli et al.’s work to container images,
identifying 740 compromised private keys verified in real
environments. However, their focus only on API keys and
tokens likely under-reported broader leakage issues. Zhang
et al. [80] examined WeChat MPs, targeting app secret vul-
nerabilities with API-verifiable methods, but lacked compre-
hensive detection techniques or large-scale risk assessment.
Furthermore, secret leakage on platforms like PyPI remains
largely unexplored.

3. Dataset & Benchmark

To address the limitations of existing benchmarks, we
build a more comprehensive secret benchmark. As illustrated

in Figure 1, the dataset construction process involves collect-
ing files from major platforms without pre-filtering, which
helps reduce bias and supports large-scale cross-platform
analysis. After extracting candidate secrets using various
tools, we perform iterative manual refinement to ensure
the benchmark aligns with real-world detection needs and
supports thorough performance evaluations.

3.1. Building the Raw Dataset

We chose GitHub repositories, PyPI packages, and
WeChat MPs as primary data sources for their unique
characteristics: GitHub for diverse programming practices,
PyPI for insights into typical open-source ecosystems, and
WeChat for its closed-source environment requiring special-
ized parsing.

Collecting Files. To address potential sampling biases, we
collected files from these platforms using tailored acquisi-
tion strategies for each:
• GitHub: We selected the top 5,000 projects from Gitstar-

ranking (accessed on July 15, 2023) [3], focusing on
repositories under 100 MB. This yielded 4,280 reposi-
tories with 3,081,425 files across 6,906 file types.

• PyPI: Using the PyPI XML-RPC API [63], we collected
packages from January 1, 2023, to April 30, 2024, re-
sulting in 668,847 packages with 57,686,181 files across
5,759 file types.

• WeChat: Based on prior research [81], we developed
a MP crawler, collecting (March–October 2023) 41,719
projects with 19,562,492 files across 71 file types.

In total, we collected 80,330,098 files across 10,961 file
types, occupying 2.95 TB of disk space.

3.2. Building the Benchmark Dataset

Given the large-scale secret detection across different
platforms, we extract a subset of our raw dataset as a
benchmark dataset to evaluate detection tools. To reduce

4

.[]*RegExSelecting
Prefix

Building
Regex

Secrets

➋

➌

Module 1 : Secret Extraction

Merging
Subsecret

All
Unstructured

❼

❺.A
Machine-

generated

❺.B

❽

❺.C

❻

Structured

Leaked Secrets

Human-
chosen

Unstructured

Candidate Secrets

Pattern
Filter (T2)

PWD
Filter (T5)

Seg-Entropy
Filter (T3)

TBS
Filter (T4)

Merging
Similar Secret

Dataset & Benchmark

KEYSENTIAL

❶

Sampling
Secrets

Source Files

Manual
Labeling

Major
Tools

Text
Content

Raw DatasetPlatforms Benchmark Dataset

True
Secrets

Prefix
Filter (T6)

Strings

Secrets

Str-assisted
Filter (T1)

❹

Secrets

Module 2 : Secret Filter

Parsing
Files

Figure 1: Overall workflow of our work.

the workload of subsequent manual filtering and make the
dataset more balanced, we randomly sample projects from
our raw dataset and aim for a similar number of files across
platforms. It results in 608,945 out of 3,081,425 (19.76%)
candidate files from GitHub repositories, 634,721 out of
57,686,181 (1.10%) from PyPI packages, and 562,864 out
of 19,562,492 (2.88%) from WeChat MPs. There are two
main building processes:

Extracting Candidate Secrets. Manually searching for and
labeling secrets in a massive amount of text is impossible.
Instead of manually labeling secrets directly from the raw
files, we use existing secret detection tools to annotate the
extracted secrets, reducing the workload. To expand the cov-
erage as much as possible and reduce the overrepresentation
bias of secrets detected by any specific tool, we incorporate
all available tools in the extraction process and treat all
detected results as candidate secrets. This strategy allows for
a fair and inclusive comparison of detected outputs across
different tools. Moreover, we standardized the dataset and
extraction process by storing files locally and executing each
tool as per its guidelines. We developed a Python script to
unify tool outputs and filtered out non-secret items, setting
placeholders for tools lacking line numbers.

Labeling True Secrets. We obtained a total of 709,125
candidate secrets through the tools. Due to the high false
positive rate of existing tools, ensuring the reliability of
manual labeling is essential. We adopted the following steps
and rules to ensure the reliability of the benchmark:

• I: Since many false secrets share similar characteristics or
formats, we streamlined the labeling process by identify-
ing recurring patterns and designing scripts to filter them
out, reducing the manual labeling workload. For example,
common false positives included wxss [45] style elements
(e.g., font- or width:), from which we filtered out
194,948 instances. Table 3 shows tools flagged 498,936

candidate secrets in WeChat MPs, but only 1,029 were
confirmed as true.

• II: We assigned two experts with over five years of
experience in software vulnerability discovery to inde-
pendently review each case’s context and metadata, fol-
lowing a standardized guideline. The labeling process
was double-blind, meaning the experts were unaware of
each other’s decisions and had no knowledge of which
tool detected each candidate secret, ensuring an unbiased
evaluation.

• III: Once the labeling was completed, disagreements
were resolved through a secondary consensus review,
leading to the final results. The overall reliability of the
labeling process was reinforced by independent anno-
tations from two researchers, who achieved a Cohen’s
Kappa value of 0.91 [59], indicating “near perfect agree-
ment” according to Landis and Koch [66].

Benchmark Properties. Our benchmark includes 11,826
manually-labeled true secrets, covering various types of
sensitive information such as API keys, tokens, private
keys, database credentials, and passwords. Secret attributes
defined in the dataset include file path, secret content, project
name, and starting line/column numbers, along with secret
category, file type, entropy, and exposure status. Table 3
shows the distribution: GitHub holds 7,659 secrets, PyPI
3,138, and WeChat 1,029, reflecting variations due to project
scale, code structure, and development practices.

TABLE 3: Statistics of secret sources across platforms.

Platform # Files # Candidate Secrets # True Secrets

GitHub 608,945 87,427 7,659
PyPI 634,721 122,762 3,138
WeChat 562,864 498,936 1,029

Total 1,806,530 709,125 11,826

5

4. Design of KEYSENTINEL

4.1. Motivation

Existing secret detection techniques struggle to accu-
rately identify machine-generated secrets due to their seman-
tic complexity. Traditional methods—such as pattern-based
filtering, entropy analysis, and word-based filtering—often
produce high false positive rates, failing to distinguish true
secrets from non-secret strings that exhibit high entropy. Ad-
ditionally, prior machine learning approaches, like text-CNN
models, are primarily designed for password classification
and do not generalize well to diverse machine-generated
secrets. A fundamental limitation is that simply combining
previous methods or tools does not yield optimal results.
Many existing techniques operate in isolation and suffer
from inherent limitations, failing to leverage complementary
strengths. Instead of mere integration, our approach refines
and extends these methods to enable more fine-grained
analysis and filtering.

4.2. Overview

The overall process of our secret detector KEYSEN-
TINEL is shown in Figure 1. KEYSENTINEL consists of two
main modules: secret extraction and secret filtering, incor-
porating six filters (T1 to T6). The secret extraction module
begins by selecting prefixes and building regular expressions
(❶) based on prior research and tools. These regular expres-
sions are then used to scan files and extract potential secrets
(❷). Afterward, duplicate secrets are merged (❸). Finally,
KEYSENTINEL extracts a set of candidate secrets. The secret
filtering module begins with the String-assisted (Str-assisted)
Filter (T1), which parses strings and matches them with
candidate secrets (❹), then further filters based on their
category and structure. Machine-generated secrets undergo
the Pattern Filter (T2), Segmented Entropy (Seg-Entropy)
Filter (T3), and Tokenization-based Semantic (TBS) Filter
(T4) for selection (❺). Human-chosen secrets are screened
using the Password (PWD) Filter (T5) to exclude non-secrets
(❻), while unstructured secrets are evaluated with the Prefix
Filter (T6) to reduce false positives (❼). Secrets failing any
filter are marked as non-secrets, and the remaining valid
candidates are consolidated by similarity (❽).

Challenges. Since the design of KEYSENTINEL still ini-
tialize from regex-based methods, we should address the
following challenges:
• Challenge I: The diverse categories and formats of se-

crets pose a challenge, leading to limited coverage in
existing regular expressions. Additionally, their extrac-
tion methods struggle to pinpoint secret content, limiting
analysis accuracy.

• Challenge II: The complexity of the text environment in
which secrets appear often leads to regex matches that
result in duplicate or incomplete strings. Leveraging the
structural features of the text is essential to ensure the
completeness and correctness of candidate secrets.

4.3. Secret Extraction

In this module, we aim to extract a wide range of
candidate secrets while ensuring correctness.

Building Extraction Regex. To address Challenge I, we
first gather raw regular expressions from open-source tools
(e.g., Gitleaks and TruffleHog) and Meli et al. [70]. We then
refine these expressions through the following steps:

• Secret Prefix Matching: Unstructured secrets, includ-
ing some machine-generated and all human-chosen ones,
make up 60% of detected secrets. Their lack of stan-
dardized formatting makes them difficult to recognize.
To better identify these secrets, we use a wider range of
prefixes. Through manual analysis of candidate files, we
select 11 secret prefixes, such as key, pass, password,
and secret. These prefixes help capture more potential
unstructured secrets for further analysis.

• Expanding Scanning Range: Tools like Gitleaks [24]
and TruffleHog [25] typically scan for passwords longer
than ten characters, covering only 37.29% [73]. To im-
prove coverage, we reduce the minimum length to five
characters, capturing 99.5% of passwords [73]. Addition-
ally, we extend the scan to cover special characters (e.g.,
&, @, $, #), which helps catch complex secrets often
missed by other tools.

• Targeted Secret Extraction: For secrets in URI formats
like id:secret@example.com, we focus on extracting
only the secret part. We standardize regular expres-
sions to extract only the secret, with prefix-based ex-
tractions divided into two groups: one for the prefix
(e.g., password:examplepass) and one for the secret (e.g.,
password:examplepass). This method improves preci-
sion and reduces false positives in filtering.

After these refinement steps, we develop 910 optimized
regular expressions covering machine-generated, generic-
prefix, and human-chosen secrets, ensuring comprehensive
extraction coverage.

Merging Subsecret. Due to using numerous regular ex-
pressions, a single text may match multiple patterns. For
instance, in key=abcd&e, one regex might extract abcd&e
while another captures abcd. Thus, removing substrings
is essential to improve accuracy and reduce unnecessary
analysis and computation. We identify the longest substring
through traversal and merge the secrets accordingly (as
detailed in Appendix B). We are also inspired by this to
design non-secret entities. If the longest substring matches
the format of a non-secret entity, like a certificate, all its
substrings are treated as non-secret. Based on this, we design
a method to identify non-secret entities, like certificates,
often prone to false positives. By leveraging the relationships
between secret substrings, we can filter out false-positive
secrets and exclude non-secret entities, improving overall
accuracy.

By all those mentioned processes, we extract candidate
secrets with a lower false positive rate.

6

Algorithm 1 String-assisted Filter
1: function STRING_ASSISTED_FILTER(file_path, candidate_secret)
2: try:
3: strings ← parseFile(file_path) ▷ Parse file based on its type
4: except:
5: return candidate_secret ▷ File types are not supported
6: filtered_hit ← ∅
7: for all hit in candidate_secret do
8: if IntegrityVerify(hit, strings_value) then
9: skip hit ▷ Filter out incomplete strings

10: else
11: append hit to filtered_hit
12: end if
13: end for
14: return filtered_hit
15: end function

4.4. Secret Filter

To address Challenge II, we need to filter out non-secrets
in candidate secrets. Below, we detail the design of our filter
for raw strings (T1) and filters for machine-generated (T2,
T3, T4) and human-chosen secrets (T5, T6).

T1:String-assisted Filter. As mentioned in Challenge II, to
address the issue of incomplete candidate secrets containing
non-string characters, we develop a string-assisted filter
to validate candidate secrets’ integrity (❹). In detail, true
secrets often appear as specific strings in structured text,
such as code literals or JSON values. However, extracting
by regular expressions alone can misidentify incomplete
fragments as secrets. To reduce false positives, we use text
parsing to verify string positions and compare candidate
secrets with parsed text.

TABLE 4: Parsing methods of major file types.

File Type Parsing Tools Runtime Category

js, jsx Babel (npm) [6] Node.js Code
ts Babel (npm) Node.js Code
py AST (PyPI) [7] Python Code
java Javalang (PyPI) [8] Python Code
go Go/AST [4], Go/Parser [5] Golang Code

json JSON (PyPI) Python Data
yaml YAML [50], JSON (PyPI) Python Data
xml XMLtoDict [51], JSON (PyPI) Python Data

plist Plistlib [52], JSON (PyPI) Python Data
csv Pandas [49], JSON (PyPI) Python Data

ipynb JSON (PyPI) Python Data

We categorize the detected files into two types: code
and data. As shown in Table 4, we utilize different tools for
analysis. Given the limitations of existing tools, we focus
on 11 specific file types, which still account for 86% of
structured files. For code files, we use abstract syntax trees
(ASTs) to extract strings. For data files, we convert them to
JSON format and extract values as potential secret strings.

We design the first filter according to the Algorithm 1,
ensuring the integrity of candidate secrets by parsing 11
structured file types. After parsing, we compare candidate
secrets with parsed string characters for assisted filtering.
Certain secret types are excluded due to their inherent length

(e.g., private keys) or subcomponent structure (e.g., a secret
being a part of a URI scheme). The main principles of our
selection strategy are:

• Secrets appearing at the same position in the text are
considered valid.

• If the content at the same position is a substring or
intersects with the parsed string, it is incomplete and not
valid.

• Secrets detected outside parsed positions should be re-
tained, such as those in comments, which may still be
valid.

T2:Pattern Filter. Previously, Meli et al. [70] developed
a pattern whitelist for continuous sequences such as aaaa,
1234, and dcba [70]. We extend this by including special
symbols (e.g., &, @, $) to exclude them from machine-
generated secrets. To achieve this, we create an algorithm
that detects repeated, sequential, and reverse patterns across
all character types, forming a whitelist through heuristic
filtering (❺.A).

T3:Segmented Entropy Filter. To comprehensively reduce
randomness issues, we introduce a filter based on Shannon
Entropy [46]. Previous research applied a 3-standard devia-
tion threshold to filter out outlier candidate secrets [70]. As
mentioned earlier, our study finds that candidate secrets with
common prefixes are prevalent but vary in type and length,
requiring manual inspection. To enhance randomness, we
filter out secrets with below-average entropy. Following
statistical guidelines [69], we calculate average entropy
for categories with over 30 occurrences, as low-frequency
categories may lack reliability. Additionally, around 3%
of longer secrets show high entropy but contain localized
patterns that need further review.

To address the high entropy of long secrets, we im-
plement a segmented entropy algorithm. Research indicates
that secrets under 30 characters are the most common [62];
thus, we divide longer secrets (over 30 characters) into 30-
character segments and assess the entropy of each segment.
Segments shorter than 30 characters at the end are merged
with the second-to-last segment. Through experimentation,
we determine effective thresholds for average entropy fil-
tering, applying a threshold of 2.4 for secrets shorter than
30 characters and 3 for each segment of longer secrets. This
conservative approach (say ❺.B) ensures that any remaining
unfiltered secrets are addressed by subsequent filters, as
validated in Section 6.

T4:Tokenization-based Semantic Filter. Although the
previous filters (i.e., T2, T3) can filter candidate se-
crets with random characteristics, this is still insufficient.
For example, if the secret string is a sentence (e.g.,
YourString_is_not_a_TrueSecret), its entropy can reach
3.7, exceeding the threshold and thus bypassing the statis-
tical filter (i.e., T3). As machine-generated secrets typically
do not contain human-readable or meaningful content, sim-
ple entropy or pattern checks are inadequate for filtering
such secrets that may cause false positives. It makes se-
mantic analysis essential for accurate identification. Further-

7

more, current word filtering faces semantic issues due to two
factors: limited dictionary coverage and overly simplistic
semantic analysis based solely on word presence, leading
to false positives. For example, auth in sql_auth_initdb
is meaningful but missed by existing rules. Thus, a finer-
grained semantic analysis algorithm is needed.

• Word Segmentation: We select a comprehensive word-
book from an open-source GitHub project based on n-
gram data from Google [16]. The wordbook contains the
top 500,000 mixed words, including nouns, verbs, and
technical terms (such as npm for Node.js). The broad
coverage is crucial because coding contains a mix of
everyday words, abbreviations, and technical terms. How-
ever, word inclusion alone is insufficient for identifying
secrets. Longer secrets may contain short words or sub-
strings (e.g., App in Apple), leading to false matches.
Therefore, specialized tokenization techniques are nec-
essary. While tools like NLTK [21] and TextBlob [22]
struggle with concatenated strings, WordNinja [23] can
address this issue. However, it may incorrectly split ab-
breviations (e.g., auth into au and th). Our analysis indi-
cates that most abbreviations follow patterns like a_b_c
or a.b.c and are typically under five characters [20],
[15]. To address this issue, we leverage this characteristic
and design Algorithm 2 in Appendix, which combines
custom regular expressions with WordNinja.

• Semantic Threshold: While machine-generated secrets
are generally random, longer ones may sometimes re-
semble real words. To establish a threshold for semantic
content, we analyze candidate secrets, categorize them
as meaningful or meaningless, and iteratively refine the
threshold. This process eventually results in the threshold
conditions defined in Algorithm 3 in Appendix (❺.C),
which evaluates the semantic significance of words based
on frequency and length.

T5:Password Filter. Human-chosen secrets often
cause false positives, as placeholders like yourpass or
put_your_secret may be misidentified as actual secrets.
Whitelist filtering alone is insufficient to distinguish these
from true secrets. For example, prefix-based detection may
mistakenly recognize password: g_bytes_ref, which
is not a secret but a GLib method [41], leading to false
positives.

To address this issue, we use a TextCNN-based model
with nine layers, consisting of six convolutional and three
fully connected layers, for character-level text classifica-
tion [79]. Using an open-source secret dataset [19], we
categorize inputs into three types: human-chosen passwords,
machine-generated secrets, and non-secret strings. Human-
chosen secrets can sometimes include complex, strong pass-
words with high randomness, which this model may classify
as machine-generated secrets. To maintain effective filtering
and avoid false negatives, we consolidate the output from
three into two categories: human-chosen passwords and
machine-generated secrets as valid, while ordinary strings
are categorized as non-secrets (❻).

To evaluate the model, we select 3,601 passwords from
our benchmark, of which 1,465 are true and 2,136 are false,
for identification and filtering by the model. Although in
real scenarios, the precision rate of 62.28% may not reach
the outstanding performance described by Feng et al. [62],
the model can still filter out a portion of non-secret content
and retain a high recall rate. To further enhance the filtering
process, we incorporate a prefix filter, which boosts the
model’s performance to 81.05% precision and an F1 score
of 0.85, as Table 5 shows.

TABLE 5: Performance of PWD Filter (T5) with and with-
out Prefix Filter (T6).

Method Precision Recall F1

T5: PWD 62.28% 89.35% 0.77
T5: PWD + T6: Prefix 81.05% 88.74% 0.85

T6:Prefix Filter. Our benchmark indicates that 60% of
secrets require generic prefix matching due to their lack
of distinctive structures, which increases the risk of false
positives. Consequently, we propose a prefix filter to process
these candidate secrets further (❼). We identify and propose
improvements for two major issues related to false positives
associated with prefixes:
• Prefix Confusion: Generic regular expressions often

match patterns like api. To better capture the context
surrounding potential secrets and enhance detection cov-
erage, we use a non-capturing group (?:[0-9a-z\-_\t
.]{0,20}) to match 0 to 20 characters around the target.
However, this can lead to false matches within words
(e.g., api in capital). To address this, we create a
whitelist using English words and terms from open-
source projects [16], [17], applying word-splitting tech-
niques for heuristic filtering.

• Semantic Analysis of Prefix: Some matched strings with
prefixes may not indicate actual secrets. For instance,
Gitleaks and TruffleHog often trigger false positives for
strings like API_username or fake_API, and publickey.
Table 6 summarizes common false-positive scenarios. To
address this, we split prefixes (e.g., a_key_b into a, key
and b) and create a whitelist based on extensive file scans
and known patterns for heuristic filtering.

TABLE 6: Common false-positive scenarios from prefixes
and heuristic filtering.

False-positive Scenarios Example

1. Related to files or paths AuthenticateUser.php => h4f1⁎⁎⁎
2. High randomness like hashes user_access_sha256 : a4dv⁎⁎⁎
3. Identifiers client_id : 5v4f⁎⁎⁎
4. Negative descriptions fake_api : AAAA⁎⁎⁎

Similar Secret Merging. Upon completing the secret ex-
traction and filtering process, KEYSENTINEL produces the
final set of correct secrets. When multiple secrets are identi-
cal or intersect at the same position, merging similar secrets
is necessary (see ❽). To facilitate this, we utilize two

8

established algorithms: the Jaro-Winkler algorithm [78] and
the SequenceMatcher algorithm [57]. The former rewards
strings with matching prefixes by assigning higher simi-
larity scores. The latter calculates similarity by identifying
the longest common subsequence and recursively matching
characters in the non-matching regions. These algorithms
enable more flexible secret comparisons even though the
output secret structure varies slightly. We adopt the con-
ditions and thresholds as previous work [55]: 1) a Jaro-
Winkler similarity score ≥ 0.7, or 2) a SequenceMatcher
score ≥ 0.6. Two secrets are considered identical if their
content is identical or similar at overlapping positions.

5. Implementation

We implemented KEYSENTINEL using 4,269 lines of
code (4,095 in Python, 61 in JavaScript, and 113 in Go).
Specifically, we used 910 custom regular expressions to
extract secrets and designed a merging algorithm to filter
non-secrets and reduce duplicates. In addition, to ensure
the integrity of the secrets, we developed 11 text-parsing
methods for common file formats (see Table 4). For similar
secret merging, we use the similarity comparison functions
from the jellyfish [12] and difflib [13] PyPI packages,
respectively. Furthermore, the deep learning models used
in the PWD Filter (T5) are trained and implemented with
PyTorch [1] using an NVIDIA Tesla V100 GPU (32 GB).

To conduct large-scale scanning, we utilize an Apache
Spark YARN cluster with 3,000 cores and 6,144 GB RAM.
A Docker image was employed for cross-platform scanning
in restricted environments, and we skipped files over 1 MB
as recommended by previous tools [2].

6. Evaluation

In this section, we evaluate KEYSENTINEL and compare
it with six selected tools in our cross-platform benchmark.
Additionally, we compare KEYSENTINEL’s performance
with SoTA LLMs.

6.1. Evaluation of KEYSENTINEL

Experiment Setup. Our experiments are conducted on a
server running Ubuntu 20.04.3 LTS with an Intel Xeon
Silver 4210 CPU featuring 40 CPU cores and 251 GB of
RAM. The experiments are conducted on our benchmark
dataset. For the ablation studies, we perform multiple trials,
disabling one filter (i.e., T1 through T6) in each trial.

Results. As Table 7 shows, the filters in KEYSENTINEL
demonstrate high performance overall, achieving 91.18%
precision, 81.71% recall, and an F1 score of 0.86 on the
benchmark. Moreover, the result highlights the impact of
removing each filter on precision, recall, and F1 score,
illustrating the contribution of each component to the overall
performance. The TBS Filter (T4) plays a critical role in
maintaining accuracy. Its removal leads to a 0.31 drop in the
F1 score (from 0.86 to 0.55) and a reduction in precision due

TABLE 7: Results of ablation experiment.

Method Precision Recall F1 δF1 ↓ Filter Objects

(w/o) T1: Str-assisted 85.10% 83.45% 0.84 -0.02 Structured file
(w/o) T2: Pattern 86.92% 82.19% 0.84 -0.02 Machine-generated secret
(w/o) T3: Seg-Entropy 57.87% 83.29% 0.68 -0.18 Machine-generated secret
(w/o) T4: TBS 41.80% 81.79% 0.55 -0.31 Machine-generated secret
(w/o) T5: PWD 81.05% 81.97% 0.82 -0.05 Human-chosen secret
(w/o) T6: Prefix 43.29% 86.02% 0.58 -0.29 Unstructured secret

KEYSENTINEL 91.18% 81.71% 0.86 0.00 All

δF1 ↓: Difference in F1 score compared to KEYSENTINEL.

to the inclusion of invalid machine-generated secrets. Each
filter is essential, as removing any one results in a significant
decrease in the precision. The multi-layered filtering strategy
ensures KEYSENTINEL’s high accuracy and reliability in
detecting real-world secret leaks.

Additionally, we investigate the impact of different fil-
ters across platforms and find subtle inconsistencies. For
WeChat, T4 is most crucial; its removal decreases the F1
score by 0.68. T3 is also significant, reducing the score
by 0.26, likely due to the limited file type diversity and
obfuscation in .js files that disrupts semantic content. In
contrast, GitHub and PyPI mainly rely on T6 due to the
prevalence of unstructured secrets. Detailed data is available
in Table 13 in Appendix.

In summary, our approach not only enhances existing
methods (T2-T5) but also introduces new techniques (T1,
T6) to tackle previously unresolved challenges, significantly
improving performance for more comprehensive and accu-
rate secret detection.

6.2. Comparative Evaluation

We evaluate the following detection tools on our bench-
mark: Ggshield, Gitleaks, TruffleHog, Repo-supervisor, Git-
secret, Whispers, and compare their results with those of
KEYSENTINEL.
Experiment Setup. To standardize comparisons across tools
with varied output structures, we conduct scans using the
default commands outlined. Since different tools may report
secrets in slightly different formats, we adopt the same
approach used for merging similar secrets to determine
whether detected secrets are identical. Since the same secret
may appear multiple times in different locations, we handle
data imbalance by normalizing the outputs and identifying
unique secrets based on project names and values.
Results. Table 8 summarizes tool evaluations. While
Ggshield achieves the second-highest precision of 73.36%,
its strict regular expressions cause it to miss many secrets,
resulting in a recall rate of only 14.86%. Moreover, Repo-
supervisor and Git-secret perform poorly, with F1 scores
near 0. The former flags 638,386 excessive secrets but lacks
proper filtering, leading to numerous false positives. The lat-
ter detects only 423 out of 11,826 labeled secrets, indicating
insufficient regular expression coverage. In contrast, KEY-
SENTINEL undergoes filtering through a combination of var-
ious filters (T1 through T6), incorporating machine learning,

9

semantic analysis, and prefix matching techniques. KEY-
SENTINEL ranks first across all metrics, achieving 91.18%
precision, 81.71% recall, and an F1 score of 0.86 with raw
output. After normalization, KEYSENTINEL reaches 89.89%
precision, 78.62% recall, and an F1 score of 0.84, achieved
by filtering out duplicates and retaining unique secrets.

Comparison on Different Platforms. KEYSENTINEL
demonstrates strong cross-platform performance in our
benchmark, achieving F1 scores of 0.86 on GitHub, 0.87
on PyPI, and 0.87 on WeChat, significantly outperforming
all other tools. In contrast, other tools show significant
performance declines when moving from GitHub to PyPI
or WeChat. For example, Gitleaks, the next-best performer
on GitHub (precision 61.29%, F1 score of 0.59), experi-
ences sharp drops on PyPI (precision 16.69%, F1 0.26) and
WeChat (precision 9.06%, F1 0.16). TruffleHog has minor
improvements on PyPI (F1 0.08) but remains largely ineffec-
tive overall. Details are provided in Table 14 in Appendix.

Overall, most tools, except KEYSENTINEL, exhibit sig-
nificant cross-platform limitations, particularly on PyPI
and WeChat. KEYSENTINEL’s superior performance under-
scores its robustness and effectiveness in handling complex
secret detection across diverse platforms.

TABLE 8: Different tools’ results of comparative evaluation.

Tool Raw Output Unique Secret Normalization
Precision Recall F1 Precision Recall F1

Ggshield 73.36% 14.86% 0.25 74.54% 19.10% 0.30
Gitleaks 26.60% 58.46% 0.37 19.18% 65.02% 0.30
TruffleHog 2.04% 11.27% 0.03 2.63% 13.11% 0.04
Repo-supervisor 0.09% 6.15% ≤ 0.01 0.07% 5.32% ≤ 0.01
Git-secret 1.18% 0.04% ≤ 0.01 9.44% 0.48% ≤ 0.01
Whispers 4.08% 16.91% 0.07 6.40% 14.46% 0.09
KEYSENTINEL 91.18% 81.71% 0.86 89.89% 78.62% 0.84

6.3. Comparison with LLMs

With the recent advancements in LLMs for secret de-
tection, we conduct additional experiments to assess KEY-
SENTINEL’s performance against leading LLMs, specifically
OpenAI’s GPT-4 and the recently introduced OpenAI o1,
known for its strong complex reasoning capabilities.

Experiment Setup. Given the high costs of analyzing the
full dataset via the OpenAI API [11], large-scale measure-
ments are impractical. Instead, we select a sample of 1,000
files, including 500 with secrets and 500 without. These files
represent 70 distinct file types, including code files like .py
and .js, document files like .md and .txt, and other files like
.pem and .json. We use our prompt for GPT-4 Turbo and
o1-preview to make them a secret detector. Our prompt has
been referred to the GitGuardian 2024 technical report [18]
and show as follow:

You are an expert in secret detection for
plaintext files. You will receive plaintext
content, and your task is to identify any
secrets within the text. If a secret is found,
provide your response in the following format:

Name: [name of the secret]

TABLE 9: Unique secret normalization vs. LLMs

Tool Precision Recall F1

KEYSENTINEL 91.47% 80.70% 0.86
GPT-4 Turbo 43.76% 38.71% 0.41
o1-preview 62.80% 62.50% 0.63

Secret: [copy of the secret]
Description: [short description of the

secret]
Repeat the format for each detected secret.

If no secrets are detected, respond with: "ALL
CLEAR."

Results. As shown in Table 9, KEYSENTINEL outperforms
both GPT-4 Turbo and o1-preview, achieving the highest
accuracy (91.47%), recall (80.70%), and F1 score (0.86). o1-
preview ranks second with 62.80% accuracy and an F1 score
of 0.63, while GPT-4 Turbo has the lowest scores across all
metrics. Despite their reasoning strengths, models like GPT-
4 Turbo and o1 still suffer from high false positives and
inconsistent results—e.g., o1 may flag the same placeholder
differently. Even with prompt tuning and Chain-of-Thought
(CoT) techniques, current LLMs face notable limitations
in secret detection, especially in terms of accuracy and
cost, requiring human oversight. Moreover, KEYSENTINEL
is also faster, scanning each file in 0.36 seconds on average,
compared to 7.57 seconds for GPT-4 Turbo and 19.61 for o1.
Given that 90% of commits involve ≤ 7 changed files [54],
KEYSENTINEL achieves practical efficiency with 2 seconds
per commit.

To further illustrate the challenges faced by LLMs, we
present and analyze two typical false positive cases in the
following.

GPT-4 Turbo Case. The code snippet of a false positive
case of GPT-4 Turbo is as follows:

...
services_jwt = CanvasSecurity::ServicesJwt.

for_user(
domain,
@current_user,
real_user: @real_current_user,
workflows:,
context: @context,
symmetric:
)
...
In this case, GPT-4 Turbo mistakenly flagged

services_jwt as a secret. The variable represents a
generated JWT rather than a hard-coded token. The model
likely misidentified it due to its association with JWTs,
highlighting a limitation in distinguishing between token
generation and actual sensitive data.

o1-preview Case. While o1-preview, one of the leading
LLMs, resolves the above false positive case from GPT-4
Turbo, it still cannot correctly identify the following code
snippet.

10

...
print(’Modified this file’)
print(’Third Modification’)
print(’changes in second branch’)
print(’123456 new change in second branch’)
...
And the CoT and Response of o1-preview are as follows:
...
Analyzing the code snippet: I’m inspecting a

code snippet with print statements, noting some
hints at potential secrets.

Evaluating the code: Parsing through the
code snippet, ’123456’ appears to be more of
a placeholder than an actual secret, given its
commonplace usage.

Identifying potential secret: I’m noting
the possibility of ’123456’ being a hard-coded
password. It’s crucial to avoid over-flagging
and ensure accurate identification without
confirming specific policies.
Name: hard-coded Password Secret: 123456
Description: A hard-coded password included in the code.

...
In this case, o1-preview mistakenly identified 123456 as

a hard-coded password, a false positive since it was part of a
print statement used for debugging. This error likely results
from over-reliance on detecting numerical patterns without
context. It highlights the need for better contextual analysis
to avoid misclassifications in secret detection.

7. Measurement

In this section, we measure three platforms—GitHub,
PyPI, and WeChat—using the raw dataset from Section 3.1.
Additionally, we analyze the internal codebases of an IT
company to investigate real-world secret leakage issues.

7.1. Cross Platform Measurement

With the help of KEYSENTINEL, we analyze secret
leakage in GitHub repositories, PyPI packages, and WeChat
MPs. To ensure the reliability of our measurement, we
randomly selected and labeled 300 samples, achieving a
precision of 91.33% on GitHub, 91.67% on PyPI, and
96.33% on WeChat MPs. Results reveal a notable prevalence
of leaks: 24.78% of 4,280 GitHub repositories, 7.47% of
668,847 PyPI packages, and 30.08% of 41,719 WeChat MPs
contain leaked secrets. These findings underscore significant
vulnerabilities, particularly in WeChat MPs, and highlight
the urgent need for effective platform countermeasures.

File Type Measurement. To explore whether secrets are
more prone to leak in specific file types across platforms,
we identify the top 5 file types with leaks on GitHub, PyPI,
and WeChat, as presented in Table 10.
• GitHub: File types like .key and .pem, used for keys

and certificates, show high leakage rates of 59.25% and
25.23%, respectively. Additionally, our analysis identifies

TABLE 10: Top 5 file types associated with secret leaks on
different platforms.

GitHub PyPI WeChat
Type Ratio Type Ratio Type Ratio
.key 59.25% .rsp 38.45% .js 0.37%

.pem 25.23% .pem 32.92% .json 0.02%
.pm 16.24% .mhtml 32.74% .svg ≤0.01%

.http 11.24% .key 23.57% .wxml ≤0.01%
.m3u 10.56% .env 12.62% .wxss ≤0.01%

secret leaks in some unexpected files like .m3u, which
may suggest potential infringements related to unautho-
rized access or exploitation of IPTV services. A detailed
case analysis is provided in Section 7.4.

• PyPI: .pem files show a 32.92% leakage rate, and .rsp
files have a 38.45% rate due to encryption algorithm
testing.The absence of secret detection measures in PyPI
makes these issues worse.

• WeChat: Since WeChat MPs are powered by JavaScript,
.js files account for the majority of leakage instances.
However, their proportion of total project files is rela-
tively low (0.37%), likely due to the uniformity of the
project file types, with .js files making up the bulk of
them. Despite this, static files like .wxml and .wxss [45]
also show leaks, likely due to improper handling of
sensitive data.
Summary: Secret leaks occur across various file types,

with platform-specific high-risk types. Thus, identifying
these is crucial to improving detection and prevention.

7.2. Handling of Leaked Secrets

To explore how developers manage leaked secrets, we
track both package versions and their update timelines on
PyPI. Rather than focusing solely on version changes, we
monitor secrets over time to see whether developers remove
them in subsequent releases. Combining both version and
time-based analysis, this approach provides a clearer picture
of how often secrets persist and whether they are addressed
in newer updates. It also offers valuable insights into how
developers respond to security risks following a leak.
Secrets Change with Packages/Versions. We collect 3,280
PyPI packages with various versions and track the number
of unique secrets associated with each. Notably, 85.91%
of packages with leaked secrets retain the same number of
secrets across version updates, suggesting that many devel-
opers are unaware of these leaks. Additionally, 8.84% of the
packages exhibit an increase in the number of secrets with
newer versions, while 4.09% of confidential information is
removed. However, some secrets are only partially deleted,
and older versions of these packages remain accessible,
presenting significant security risks. In PyPI, outdated ver-
sions are seldom removed or deprecated, allowing exposed
confidential information to be easily exploited by potential
attackers. Thus, even if developers remove sensitive infor-
mation in newer versions, users relying on older versions
may inadvertently introduce security risks.

11

20
23

-01

20
23

-02

20
23

-03

20
23

-04

20
23

-05

20
23

-06

20
23

-07

20
23

-08

20
23

-09

20
23

-10

20
23

-11

20
23

-12

20
24

-01

20
24

-02

20
24

-03

20
24

-04

Time (Y-M)

0

200

400

600

800

1000

1200

1400

1600

N
ew

 S
ec

re
t

From new packages
From old packages' new version

Figure 2: Monthly leaked secret statistics on PyPI.

Temporal Analysis of Secret Leakage. To investigate the
temporal trends of secret leakage and the sources of new
leaks, we refer to GitGuardian’s analysis [14], which applies
restrictions on a large volume of alerts to reduce noise. As
illustrated in Figure 2, the exposed secrets can be attributed
to two primary categories: the introduction of new secrets
in updated versions of previously leaked packages and the
emergence of newly leaked packages. Specifically, on av-
erage, 89.43% of the monthly leaked secrets are linked to
newly released packages, which are the primary contributors
to secret leakage, while 10.57% relates to new versions
of existing leaked packages, which also show an upward
trend. For example, in the ⁎⁎⁎system-server package, an
API key was leaked in the settings.py file during Django
deployment; while in the ⁎⁎⁎client package, a password
was first leaked in the METADATA file in January 2023,
with new secrets exposed in the updated version within
the administration.py file in February 2023. On average,
each new package contains 2.48 leaked secrets, while each
existing package version has an average of 0.04 new leaks.
These findings indicate that many developers continue to
introduce new secrets during updates. Thus, it is crucial to
enhance oversight and raise developers’ awareness of best
practices in secret management.

7.3. Secret Detection in the Real-world Company

To investigate secret leakage in real-world production
environments, we have obtained permission to scan seven
internal code repositories of an IT company. Although the
company has internal regulations explicitly prohibiting the
inclusion of hard-coded secrets in its code repositories, we
find all (7/7) repositories had leaked secrets.

To further investigate leaked secrets, as shown in Ta-
ble 12, we classify them into four risk levels based on the po-
tential impact of their exposure, and the proportion of highly
sensitive (high-risk and critical-risk) secrets up to 77%. Due
to ethical constraints, we cannot directly validate leaked
secrets. Instead, to streamline the process, we prioritized
critical-risk secrets and designed a disclosure questionnaire
covering key aspects such as content, location, validity, and

TABLE 11: Valid verification of real-world secrets.

Project # Total # Valid # Strong # IsC
(in Test-Env.) (in Test-Env.) T F T F

Proj.1 23 (2) 9 (0) 19 4 4 19
Proj.2 11 (10) 6 (5) 9 2 2 9
Proj.3 11 (1) 5 (0) 10 1 1 10
Proj.4 10 (1) 4 (1) 9 1 1 9
Proj.5 25 (13) 6 (1) 19 6 5 20
Proj.6 17 (3) 8 (2) 14 3 2 15
Proj.7 7 (0) 0 (0) 6 1 1 6

All 104 (30) 38 (9) 86 18 16 88

Strong: Secrets rated Level 4 (strongest) by zxcvbn;
IsC: Common secrets in PwnedPasswords [29].

whether it originated from a test environment. Since all
detected secrets were found in production, any identified
test secrets were confirmed as reused. Moreover, we utilize
tools like PwnedPasswords [29] to identify exposed and
commonly used secrets and use the offline open-source
estimator zxcvbn [77] to evaluate the strength of leaked
secrets.

Results & Discussion. As shown in Table 11, feedback
from seven repository owners indicates that 36.54% (38/104)
of identified secrets are valid. Moreover, we find older
versions of those repository leaked secrets as well. Of the
valid secrets, 23.68% (9/38) are in test environments, while
76.32% are in production, highlighting that many developers
overlook the importance of separating these environments.

Moreover, timely detection and response to newly leaked
secrets are crucial, as these secrets may not yet be exploited
but could lead to severe consequences if accessed by attack-
ers. Weak and previously exposed secrets should also be
addressed because they can be used for brute-force attacks.
Our verification demonstrates that plenty of detected weak
passwords are valid.

Additionally, ensuring secret security requires vigilance
at every step since any weak link can result in vulnerabil-
ities. Even though many developers use strong passwords,
embedding these secrets directly in code still undermines
their security. Notably, 82.69% of high-risk secrets are com-
plex passwords with high strength, emphasizing that even
credentials designed to be difficult to guess or brute-force
provide no security once they are exposed.

7.4. Case Studies

This section presents three typical leakage cases from
three platforms.

Bypassing IPTV Authentication. IPTV (Internet Proto-
col Television) [42] streams live and on-demand TV over
Internet networks, enabling high-definition, lag-free view-
ing without traditional cables. However, attackers can sniff
packets to obtain service secrets and bypass verification.
Table 10 indicates that many .m3u files on GitHub contain
potential secret leaks, often from projects designed to bypass
IPTV services. Listing 1 provides a code snippet from

12

TABLE 12: Risk level descriptions and examples.

Risk Level Ratio Description Example

I. Critical Risky 34% If an attacker obtains this information, it can be directly exploited
without context assessment. Examples include database addresses with
credentials, SSH credentials, or commonly used public services.

DBURL: jdbc:mysql://sql.a1⁎⁎⁎.com:3306/mydb
Username: admin
Password: P@ss⁎⁎⁎⁎

II. High Risky 43% If an attacker obtains this information, it can be indirectly exploited
without context assessment. Examples include private key certificates
and p12 certificates.

-----BEGIN CERTIFICATE-----
MIIDXTCCAk......(truncated)
-----END CERTIFICATE-----
Apple Push Service .p12: ⁎⁎⁎_cert.p12

III. Mid Risky 14% If an attacker obtains this information, a simple assessment of the
code context is needed to determine potential further exploitation.

API Key: XZA12-⁎⁎⁎⁎⁎⁎
An internal function call:
connect_to_service(api_key)

IV. Low Risky 9% If an attacker obtains this information, it is generally difficult or
impossible to exploit under normal circumstances.

Modify the parameters as needed.
PASSWORD=gra⁎⁎⁎⁎⁎⁎
LOCAL_IP=0.0.0.0

the Tvlist-awesome-m3u-m3u8 repository, which includes
.m3u files with secrets from over 8,000 IPTV addresses
across 38 countries. This misuse violates providers’ content
rights, causing financial losses. Leaked secrets may enable
attackers to "legally" exploit IPTV keys, leading to copyright
infringement and potential DDoS attacks.

1 #Sample: Tvlist -awesome -m3u -m3u8
2 #EXTINF:-1 ,Ru⁎⁎⁎⁎⁎ jing
3 https :// live.cig ⁎⁎⁎.tv/live/hd⁎⁎. m3u8?

auth_key=52⁎⁎⁎39b
4 #EXTINF:-1 ,Ho⁎⁎⁎an (1080p)
5 http ://5.2⁎⁎.7⁎.3⁎:1⁎⁎⁎0/C⁎⁎1/ index.m3u8?

token=kds⁎⁎⁎Io

Listing 1: Content snippet of the IPTV list on GitHub.

Secret in Log Files. In real-world scenarios, we discover
secret leaks in database dumps (e.g., .sql files containing
log data), confirmed by developers. Investigation shows that
a vulnerability platform had scanned other companies for
weak passwords and logged results in .sql files, which
were overlooked, leading to exposure. Similar issues are
found on PyPI, where .debug files contain secret-based
authentication logs. For instance, as shown in Listing 2, the
exponent-server-sdk-async package (versions 2.1.2 and
2.1.3) records push logs in debug.log, potentially exposing
secrets due to failed network requests. We reported this issue
to the developer, and they removed the secrets and cleared
historical versions. Our analysis indicates that file types such
as .debug, .error, .log, and .audit present varying degrees
of risk, with 2,772 log files flagged as potential threats. It
highlights the need to carefully monitor and sanitize log and
result files generated during testing and runtime. These files
may unknowingly store sensitive data and pose accidental
security risks.

Leaked by 3rd Party Templates. With the growing popu-
larity of MPs, many businesses use them for sales and pro-
motion. Youzan [44] provides comprehensive e-commerce
solutions, enabling businesses to build online stores, manage
sales, and engage with customers efficiently. Merchants
can create MPs on platforms like WeChat using Youzan’s

1 #Sample: exponent_server_sdk_async/debug.log
2 2024 -04 -29 14:34:16.545 |DEBUG|
3 __main__:<module >:17 - Using Expo Token:

OLEae8Zpg⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎pqdamTjJZBN-F
4 2024 -04 -29 14:39:33.811 |DEBUG|
5 __main__:<module >:17 - Using Expo Token:

OLEae8Zpg⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎pqdamTjJZBN-F

Listing 2: Content snippet of the leaked log file on PyPI.

backend tools, simplifying template selection, content edit-
ing, and publishing. However, as shown in Listing 3, we
discovered that Youzan’s template MPs may use the same
hard-coded client_id and client_secret pairs for backend API
authorization. An attacker could exploit these secrets to ob-
tain an access_token from Youzan’s authorization API [47]
and potentially perform sensitive operations [48], such as
checking orders, retrieving customer addresses, and mod-
ifying product prices. This breach, stemming from leaked
template secrets, not only poses significant security risks but
also undermines platform trust. It potentially causes severe
financial losses, reputational damage, and privacy violations
for affected merchants, resulting from unauthorized orders
and price manipulations.

1 "31XQ": function(e, t, n) {
2 t.a = {
3 clientId: "4d6⁎⁎⁎⁎⁎⁎c3ed8",
4 clientSecret: "1cd⁎⁎⁎⁎⁎⁎2a",
5 common: {
6 yzLogo: "https://⁎⁎⁎. yzcdn.cn /.../.../⁎⁎⁎.

png" } };

Listing 3: Code snippet of a Youzan template on WeChat.

8. Discussion

8.1. Ethics and Responsible Disclosure

Following ethical guidelines [65], all analyses were con-
ducted locally, and no actual attacks were used to validate
detected secrets. Moreover, we tried our best to conduct a
responsible disclosure process for identifying secret leaks

13

in GitHub repositories, PyPI packages, and WeChat MPs.
Similar to prior work [63], [81], we used public contact
information to reach project owners, sending 3,906 disclo-
sure emails total and receiving 205 responses as the paper
writing. Notably, while most projects we examined were
over a year old, secrets in 12 projects were still valid and
posed active security risks, as confirmed by project owners.
This finding underscores the ongoing threat of secret leaks
in older projects and the need for continuous monitoring and
proactive management. Through this disclosure process, we
aim to mitigate immediate risks and encourage developers
to adopt stronger secret management practices.

8.2. Lessons Learned

Through active discussions with developers, we identify
three main issues contributing to secret leakage:

I. Human Error. Developers’ poor practices and limited
security awareness often lead to secret leaks. For exam-
ple, 60.07% of confirmed leaks are due to manually hard-
coded secrets, involving sensitive information like API keys
and passwords. Additionally, secrets frequently appear in
comments, bundled log files, or intermediate files added to
projects (as seen in our case studies), leading to potential
leakages.

II. Misuse of Production and Test Environments. Pro-
duction environments hold high-validity secrets (76.32%)
that are often inadvertently left in code, while testing en-
vironments frequently reuse these production secrets for
convenience. Our data shows that 23.68% of leaks occur in
testing settings, where secrets are often treated as low-risk
and overlooked in detection. Temporary secrets or default
credentials, like weak passwords (12345678), often persist
longer than intended, creating security vulnerabilities.

III. Static Secret Implementation. Many service
providers rely on static secret practices for access control,
placing the security responsibility on developers. Although
providers implement measures such as IP whitelisting, the
safety of these static secrets largely hinges on the develop-
ers’ security practices. If developers lack sufficient security
awareness, such dependency could result in critical vulner-
abilities. For example, as shown in our WeChat MPs case
study, embedding secrets in production code significantly
increases the risk of exposure and exploitation.

In conclusion, many developers lack awareness of secret
management best practices. Vendors and platforms should
enhance secret detection tools and provide clearer security
guidance to help mitigate these issues.

8.3. Good Practices

To address secret leakage, we propose some good prac-
tices.

I. Avoiding Hard-coded Secrets. Developers should
avoid embedding sensitive data in code directly. Pre-commit
hooks and CI/CD secret detection can scan for sensitive
information before committing and building. Using environ-
ment variables or secret management tools like AWS Secrets

Manager [30] or HashiCorp Vault [32] ensures secrets re-
main outside the codebase. Moreover, regular code reviews
are essential, especially in large teams.

II. Isolating Testing Environments. To avoid secret
leakage, developers should ensure that testing environments
use environment-specific secrets rather than production cre-
dentials. The automated removal of test secrets, along with
the timely clearing of documentation and logs, helps ensure
secure testing practices.

III. Better Provider Solutions. Service providers
should adopt short-lived, auto-rotating secrets or enforce
multi-factor authentication to minimize the implementation
of static secrets. Strengthened one-time viewing for secrets
and integrated secret management tools can reduce devel-
oper burden and improve security. Additionally, providers
can implement an incident response system to inform de-
velopers of potential leaks on code platforms. For example,
OpenAI notifies developers via email when API secrets are
detected in public GitHub repositories [43].

8.4. Limitation

Unparsebale Files. Obfuscated secrets fall outside our met-
rics, as none of the tools we employ perform deobfuscation.
As a purely static tool, KEYSENTINEL struggles to detect
secrets in encrypted or heavily obfuscated text, code files,
and binary files. Building on previous work [58], we use a
dataset of 4,264 PowerShell scripts, which includes both ob-
fuscated and their corresponding deobfuscated files, to eval-
uate KEYSENTINEL’s detection capabilities for obfuscated
files. In the deobfuscated files, KEYSENTINEL detected
an additional 280 secrets. However, in their corresponding
original obfuscated files, KEYSENTINEL identified only 48
out of the 280, resulting in a detection rate of approximately
17.14%. Thus, our experiments show that KEYSENTINEL
can still effectively detect them when combined with com-
panion deobfuscation tools.

Contextual Analysis. While KEYSENTINEL incorporates
advanced extraction and filtering methods, it operates purely
statically, without analyzing the broader context of the file
where a secret is found. We also tried to use LLM models to
detect secrets and found that the effect is also unsatisfactory,
highlighting the challenges of accurately interpreting con-
text. Moreover, KEYSENTINEL does not analyze extended
contextual information to further assist in secret validation.
Determining whether leaks remain active or revoked often
requires more than the secret itself, relying on factors like
type, usage conditions, and metadata. This process is highly
complex and raises ethical concerns. Therefore, automated
context-based secret detection remains an area for future
exploration.

9. Conclusion

In conclusion, secret leakage remains a significant risk
in software development, primarily due to hard-coded se-
crets like API keys and passwords. Current tools often

14

miss secrets or generate false positives due to simplistic
pattern matching. Thus, we develop KEYSENTINEL, which
integrates advanced techniques like semantic analysis to
address these issues. It outperforms industry-standard tools,
achieving a precision of 91.18%, a recall of 81.71%, and
an F1 score of 0.86. We also conduct various, large-scale
measurements cross three platforms. We discuss main rea-
sons of secret leakage, such as human error and misusing
testing environments, emphasizing the need for better secret
management practices. Plus, service providers should adopt
secure methods like dynamic secret generation to reduce the
reliance on hard-coded secrets. The combined approach is
crucial for mitigating secret leakage and enhancing overall
security.

Acknowledgement

We thank anonymous reviewers for their valuable com-
ments and suggestions. The authors from Southeast Univer-
sity were supported in part by the National Natural Science
Foundation of China (Grant Nos. 62472092, 62172089,
62106045), Natural Science Foundation of Jiangsu Province
under Grants No. BK20241751, Jiangsu Provincial Key
Laboratory of Computer Networking Technology, Jiangsu
Provincial Key Laboratory of Network and Information Se-
curity under Grants No. BM2003201, and Key Laboratory of
Computer Network and Information Integration of Ministry
of Education of China under Grants No. 93K-9, Nanjing
Purple Mountain Laboratories. We also thank the Big Data
Computing Center of SEU for providing computational re-
sources. The author from Quancheng Lab was supported in
part by the Taishan Scholars Program. All of the work was
done at the QI-ANXIN Technology Research Institute.

References

[1] “Get started: PyTorch 2.0,” https://pytorch.org/get-started/pytorch-2.
0/, Accessed: 2023-07-07.

[2] “Gitguardian: content scan,” https://api.gitguardian.com/docs#tag/
Scan-Methods/operation/content_scan, Accessed: 2023-07-07.

[3] “GitHub: Repositories Ranking,” https://gitstar-ranking.com/
repositories, Accessed: 2023-07-15.

[4] “Go: ast,” https://pkg.go.dev/go/ast, Accessed: 2023-07-18.

[5] “Go: parser,” https://pkg.go.dev/go/parser, Accessed: 2023-07-18.

[6] “Npmjs: babel,” https://www.npmjs.com/package/@babel/core, Ac-
cessed: 2023-07-18.

[7] “PyPI: AST,” https://pypi.org/project/AST/, Accessed: 2023-07-18.

[8] “PyPI: javalang,” https://pypi.org/project/javalang/, Accessed: 2023-
07-18.

[9] “A New Approach to Application Security - Legit Security,”
https://www.legitsecurity.com/hubfs/Collateral/A%20New%
20Approach%20to%20Application%20Security%20-%20Legit%
20Security%20-%20v1.pdf, Accessed: 2024-09-23.

[10] “IBM: Cost of a Data Breach Report 2024,” https://www.ibm.com/
reports/data-breach, Accessed: 2024-09-23.

[11] “OpenAI: Rate limits,” https://platform.openai.com/docs/guides/
rate-limits, Accessed: 2024-10-07.

[12] “PyPI: jellyfish,” https://pypi.org/project/jellyfish/, Accessed: 2024-
10-07.

[13] “Python difflib: Helpers for computing deltas,” https://docs.python.
org/3/library/difflib.html, Accessed: 2024-10-07.

[14] “Remediate secrets incidents: Overview,” https://docs.gitguardian.
com/secrets-detection/remediate/overview, Accessed: 2024-10-07.

[15] “Abbreviations in code,” https://github.com/abbrcode/
abbreviations-in-code, Accessed: 2024-10-14.

[16] “David47k: top english wordlists,” https://github.com/david47k/
top-english-wordlists, Accessed: 2024-10-14.

[17] “Dwyl: english words,” https://github.com/dwyl/english-words/tree/
master, Accessed: 2024-10-14.

[18] “GitGuardian: state-of-secrets-sprawl-report-2024,” https:
//www.gitguardian.com/state-of-secrets-sprawl-report-2024,
Accessed: 2024-10-14.

[19] “GitHub: PassFinder,” https://github.com/Aoa0/PassFinder, Accessed:
2024-10-14.

[20] “Machine learning acronyms and abbreviations,” https://github.com/
AgaMiko/machine-learning-acronyms, Accessed: 2024-10-14.

[21] “NLTK,” https://www.nltk.org/, Accessed: 2024-10-14.

[22] “PyPI: textblob,” https://pypi.org/project/textblob, Accessed: 2024-
10-14.

[23] “PyPI: wordninja,” https://pypi.org/project/wordninja, Accessed:
2024-10-14.

[24] “Gitleaks rule:generic-api-key,” https://github.com/gitleaks/gitleaks/
blob/master/config/gitleaks.toml, Accessed: 2024-10-15.

[25] “Trufflhog rule:generic-api-key,” https://github.com/trufflesecurity/
trufflehog/blob/34e443adcf1548e573a9d8f8496efb49b5d8a9c1/
examples/generic.yml#L2, Accessed: 2024-10-15.

[26] “Ian Ahl: When AI Gets Hijacked,” https://permiso.io/blog/
exploiting-hosted-models, Accessed: 2024-10-21.

[27] “Internet Archive breached again through stolen access
tokens,” https://www.bleepingcomputer.com/news/security/
internet-archive-breached-again-through-stolen-access-tokens/,
Accessed: 2024-10-21.

[28] “Mobile App Supply Chain Vulnerabilities Could Endanger Sensitive
Business Information,” https://www.security.com/threat-intelligence/
mobile-supply-chain-aws, Accessed: 2024-10-21.

[29] “PyPI: pwnedpasswords,” https://pypi.org/project/pwnedpasswords/,
Accessed: 2024-10-21.

[30] “Amazon AWS Secrets Manager,” https://aws.amazon.com/
secrets-manager/, Accessed: 2024-10-29.

[31] “Opencagedata guides: create a new api key,” https://opencagedata.
com/guides/how-to-create-a-new-api-key, Accessed: 2024-10-29.

[32] “Vault,” https://www.vaultproject.io, Accessed: 2024-10-29.

[33] “2023 Active Adversary Report,” https://news.sophos.com/en-us/
2023/08/23/active-adversary-for-tech-leaders, Accessed: 2024-10-4.

[34] “Removing sensitive data from a repository,” https://docs.github.
com/en/authentication/keeping-your-account-and-data-secure/
removing-sensitive-data-from-a-repository, Accessed: 2024-10-4.

[35] “GitHub: auth0/repo-supervisor,” https://github.com/auth0/
Repo-supervisor, Accessed: 2024-10-5.

[36] “GitHub: awslabs/git-secrets,” https://github.com/awslabs/git-secrets,
Accessed: 2024-10-5.

[37] “GitHub: GitGuardian/ggshield,” https://github.com/GitGuardian/
Ggshield, Accessed: 2024-10-5.

[38] “GitHub: gitleaks/gitleaks,” https://github.com/gitleaks/gitleaks, Ac-
cessed: 2024-10-5.

[39] “GitHub: Skyscanner/whispers,” https://github.com/Skyscanner/
whispers, Accessed: 2024-10-5.

15

https://pytorch.org/get-started/pytorch-2.0/
https://pytorch.org/get-started/pytorch-2.0/
https://api.gitguardian.com/docs#tag/Scan-Methods/operation/content_scan
https://api.gitguardian.com/docs#tag/Scan-Methods/operation/content_scan
https://gitstar-ranking.com/repositories
https://gitstar-ranking.com/repositories
https://pkg.go.dev/go/ast
https://pkg.go.dev/go/parser
https://www.npmjs.com/package/@babel/core
https://pypi.org/project/AST/
https://pypi.org/project/javalang/
https://www.legitsecurity.com/hubfs/Collateral/A%20New%20Approach%20to%20Application%20Security%20-%20Legit%20Security%20-%20v1.pdf
https://www.legitsecurity.com/hubfs/Collateral/A%20New%20Approach%20to%20Application%20Security%20-%20Legit%20Security%20-%20v1.pdf
https://www.legitsecurity.com/hubfs/Collateral/A%20New%20Approach%20to%20Application%20Security%20-%20Legit%20Security%20-%20v1.pdf
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/rate-limits
https://pypi.org/project/jellyfish/
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
https://docs.gitguardian.com/secrets-detection/remediate/overview
https://docs.gitguardian.com/secrets-detection/remediate/overview
https://github.com/abbrcode/abbreviations-in-code
https://github.com/abbrcode/abbreviations-in-code
https://github.com/david47k/top-english-wordlists
https://github.com/david47k/top-english-wordlists
https://github.com/dwyl/english-words/tree/master
https://github.com/dwyl/english-words/tree/master
https://www.gitguardian.com/state-of-secrets-sprawl-report-2024
https://www.gitguardian.com/state-of-secrets-sprawl-report-2024
https://github.com/Aoa0/PassFinder
https://github.com/AgaMiko/machine-learning-acronyms
https://github.com/AgaMiko/machine-learning-acronyms
https://www.nltk.org/
https://pypi.org/project/textblob
https://pypi.org/project/wordninja
https://github.com/gitleaks/gitleaks/blob/master/config/gitleaks.toml
https://github.com/gitleaks/gitleaks/blob/master/config/gitleaks.toml
https://github.com/trufflesecurity/trufflehog/blob/34e443adcf1548e573a9d8f8496efb49b5d8a9c1/examples/generic.yml#L2
https://github.com/trufflesecurity/trufflehog/blob/34e443adcf1548e573a9d8f8496efb49b5d8a9c1/examples/generic.yml#L2
https://github.com/trufflesecurity/trufflehog/blob/34e443adcf1548e573a9d8f8496efb49b5d8a9c1/examples/generic.yml#L2
https://permiso.io/blog/exploiting-hosted-models
https://permiso.io/blog/exploiting-hosted-models
https://www.bleepingcomputer.com/news/security/internet-archive-breached-again-through-stolen-access-tokens/
https://www.bleepingcomputer.com/news/security/internet-archive-breached-again-through-stolen-access-tokens/
https://www.security.com/threat-intelligence/mobile-supply-chain-aws
https://www.security.com/threat-intelligence/mobile-supply-chain-aws
https://pypi.org/project/pwnedpasswords/
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/secrets-manager/
https://opencagedata.com/guides/how-to-create-a-new-api-key
https://opencagedata.com/guides/how-to-create-a-new-api-key
https://www.vaultproject.io
https://news.sophos.com/en-us/2023/08/23/active-adversary-for-tech-leaders
https://news.sophos.com/en-us/2023/08/23/active-adversary-for-tech-leaders
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository
https://github.com/auth0/Repo-supervisor
https://github.com/auth0/Repo-supervisor
https://github.com/awslabs/git-secrets
https://github.com/GitGuardian/Ggshield
https://github.com/GitGuardian/Ggshield
https://github.com/gitleaks/gitleaks
https://github.com/Skyscanner/whispers
https://github.com/Skyscanner/whispers

[40] “GitHub: trufflesecurity/trufflehog,” https://github.com/trufflesecurity/
trufflehog, Accessed: 2024-10-5.

[41] “Glib: g_bytes_ref,” https://docs.gtk.org/glib/method.Bytes.ref.html,
Accessed: 2024-11-11.

[42] “IPTV: Internet Protocol Television,” https://en.wikipedia.org/wiki/
Internet_Protocol_television, Accessed: 2024-11-11.

[43] “OpenAI Help Center: Security and API Key Safety,” https://help.
openai.com/en/collections/3675944-security-and-api-key-safety, Ac-
cessed: 2024-11-11.

[44] “Youzan,” https://ir.youzan.com/en, Accessed: 2024-11-11.

[45] “WeChat Mini-programs: View Layer,” https://developers.weixin.qq.
com/miniprogram/en/dev/framework/view/, Accessed: 2024-11-4.

[46] “Wikipedia: Entropy,” https://en.wikipedia.org/wiki/Entropy_
(information_theory), Accessed: 2024-11-4.

[47] “Youzan: Get the access_token,” https://doc.youzanyun.com/resource/
develop-guide/41355/49258, Accessed: 2024-11-4.

[48] “Youzan: the API document,” https://doc.youzanyun.com/list/API/
1286, Accessed: 2024-11-4.

[49] “PyPI: Pandas,” https://pypi.org/project/pandas/, Accessed: 2024-11-
6.

[50] “PyPI: PyYAML,” https://pypi.org/project/PyYAML/, Accessed:
2024-11-6.

[51] “PyPI: xmltodict,” https://pypi.org/project/xmltodict/, Accessed:
2024-11-6.

[52] “Python Docs: plistlib,” https://docs.python.org/ja/3/library/plistlib.
html, Accessed: 2024-11-6.

[53] “KellanZ/KEYSENTINEL: a secret detection tool.” https://github.
com/KellanZ/KEYSENTINEL/tree/main, Accessed: 2025-04-08.

[54] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a
characterization of open source software repositories,” in 2008 16th
IEEE international conference on program comprehension. IEEE,
2008, pp. 182–191.

[55] S. K. Basak, J. Cox, B. Reaves, and L. Williams, “A comparative
study of software secrets reporting by secret detection tools,” in
2023 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 2023, pp. 1–12.

[56] S. K. Basak, L. Neil, B. Reaves, and L. Williams, “Secretbench: A
dataset of software secrets,” in 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories (MSR). IEEE, 2023,
pp. 347–351.

[57] P. E. Black, “Ratcliff/obershelp pattern recognition,” Dictionary of
algorithms and data structures, vol. 17, 2004.

[58] H. Chai, L. Ying, H. Duan, and D. Zha, “Invoke-deobfuscation: Ast-
based and semantics-preserving deobfuscation for powershell scripts,”
in 2022 52nd Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), 2022, pp. 295–306.

[59] J. Cohen, “A coefficient of agreement for nominal scales,” Educa-
tional and psychological measurement, vol. 20, no. 1, pp. 37–46,
1960.

[60] M. Dahlmanns, C. Sander, R. Decker, and K. Wehrle, “Secrets
revealed in container images: an internet-wide study on occurrence
and impact,” in Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, 2023, pp. 797–811.

[61] C. Farinella, A. Ahmed, and C. Watterson, “Git leaks: Boosting
detection effectiveness through endpoint visibility,” in 2021 IEEE
20th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom). IEEE, 2021, pp. 701–
709.

[62] R. Feng, Z. Yan, S. Peng, and Y. Zhang, “Automated detection of
password leakage from public github repositories,” in Proceedings
of the 44th International Conference on Software Engineering, 2022,
pp. 175–186.

[63] Y. Gu, L. Ying, Y. Pu, X. Hu, H. Chai, R. Wang, X. Gao, and H. Duan,
“Investigating package related security threats in software registries,”
in 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023,
pp. 1578–1595.

[64] S. Josefsson and S. Leonard, “Textual encodings of pkix, pkcs, and
cms structures,” Tech. Rep., 2015.

[65] E. Kenneally and D. Dittrich, “The menlo report: Ethical principles
guiding information and communication technology research,” Avail-
able at SSRN 2445102, 2012.

[66] J. R. Landis and G. G. Koch, “The measurement of observer agree-
ment for categorical data,” biometrics, pp. 159–074, 1977.

[67] Y. Li, H. Wang, and K. Sun, “A study of personal information
in human-chosen passwords and its security implications,” in IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[68] S. Lounici, M. Rosa, C. M. Negri, S. Trabelsi, and M. Önen, “Opti-
mizing leak detection in open-source platforms with machine learning
techniques.” in ICISSP, 2021, pp. 145–159.

[69] E. J. Mascha and T. R. Vetter, “Significance, errors, power, and sample
size: the blocking and tackling of statistics,” Anesthesia & Analgesia,
vol. 126, no. 2, pp. 691–698, 2018.

[70] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git?
characterizing secret leakage in public github repositories.” in NDSS,
2019.

[71] M. R. Rahman, N. Imtiaz, M.-A. Storey, and L. Williams, “Why secret
detection tools are not enough: It’s not just about false positives-an
industrial case study,” Empirical Software Engineering, vol. 27, no. 3,
p. 59, 2022.

[72] A. Saha, T. Denning, V. Srikumar, and S. K. Kasera, “Secrets in
source code: Reducing false positives using machine learning,” in
2020 International Conference on COMmunication Systems & NET-
workS (COMSNETS). IEEE, 2020, pp. 168–075.

[73] C. Shen, T. Yu, H. Xu, G. Yang, and X. Guan, “User practice in
password security: An empirical study of real-life passwords in the
wild,” Computers & Security, vol. 61, pp. 130–141, 2016.

[74] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting
and mitigating secret-key leaks in source code repositories,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries. IEEE, 2015, pp. 396–400.

[75] D. Wang, Q. Gu, X. Huang, and P. Wang, “Understanding human-
chosen pins: characteristics, distribution and security,” in Proceedings
of the 2017 ACM on Asia Conference on Computer and Communi-
cations Security, 2017, pp. 372–385.

[76] E. Wen, J. Wang, and J. Dietrich, “Secrethunter: A large-scale secret
scanner for public git repositories,” in 2022 IEEE International
Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom). IEEE, 2022, pp. 123–130.

[77] D. L. Wheeler, “zxcvbn:{Low-Budget} password strength estima-
tion,” in 25th USENIX Security Symposium (USENIX Security 16),
2016, pp. 157–073.

[78] W. E. Winkler, “String comparator metrics and enhanced decision
rules in the fellegi-sunter model of record linkage.” 1990.

[79] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” Advances in neural information
processing systems, vol. 28, 2015.

[80] Y. Zhang, Y. Yang, and Z. Lin, “Don’t leak your keys: Understanding,
measuring, and exploiting the appsecret leaks in mini-programs,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 2411–2425.

[81] Z. Zhang, Q. Hou, L. Ying, W. Diao, Y. Gu, R. Li, S. Guo, and
H. Duan, “Minicat: Understanding and detecting cross-page request
forgery vulnerabilities in mini-programs,” in Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Secu-
rity, 2024.

[82] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak? uncovering
the data leakage in cloud from mobile apps,” in 2019 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2019, pp. 1296–1310.

16

https://github.com/trufflesecurity/trufflehog
https://github.com/trufflesecurity/trufflehog
https://docs.gtk.org/glib/method.Bytes.ref.html
https://en.wikipedia.org/wiki/Internet_Protocol_television
https://en.wikipedia.org/wiki/Internet_Protocol_television
https://help.openai.com/en/collections/3675944-security-and-api-key-safety
https://help.openai.com/en/collections/3675944-security-and-api-key-safety
https://ir.youzan.com/en
https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/
https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://doc.youzanyun.com/resource/develop-guide/41355/49258
https://doc.youzanyun.com/resource/develop-guide/41355/49258
https://doc.youzanyun.com/list/API/1286
https://doc.youzanyun.com/list/API/1286
https://pypi.org/project/pandas/
https://pypi.org/project/PyYAML/
https://pypi.org/project/xmltodict/
https://docs.python.org/ja/3/library/plistlib.html
https://docs.python.org/ja/3/library/plistlib.html
https://github.com/KellanZ/KEYSENTINEL/tree/main
https://github.com/KellanZ/KEYSENTINEL/tree/main

Appendix A.
Algorithm Descriptions for the TBS Filter (T4)

This section provides a detailed description of the T4,
designed to analyze and assess the semantic meaning of
secrets using tokenized word lists.

To analyze the semantics of secrets at a fine-grained
level, we split them into tokens. Traditional tools like
NLTK [21] and TextBlob [22] struggle with concatenated
strings, while WordNinja [23] can effectively address this
issue. However, WordNinja may incorrectly split abbrevi-
ations (e.g., splitting auth into au and th). We observed
that abbreviations often appear connected by non-alphabetic
symbols (e.g., a_b_c) and typically do not exceed five
characters in length [20], [15]. Therefore, we first use regular
expressions to split strings at non-alphabetic symbols, which
helps preserve abbreviations. We then examine the length
of the resulting tokens: if a token exceeds five characters, it
may still be a concatenation of words, so we apply Word-
Ninja to split it further. To reduce noise, we remove tokens
shorter than three characters, as they are less likely to be
meaningful words or abbreviations. The detailed algorithm
is presented in Algorithm 2.

To perform semantic analysis, we tokenize detected se-
crets using Algorithm 2 and compare them against a pre-
collected word list. Experiments show that a word-to-length
ratio of over 35% generally signals meaningful content. Ad-
ditionally, words longer than four characters are uncommon
in highly random secrets, so we apply extra checks based
on word and secret length. Further details are outlined in
Algorithm 3.

Algorithm 2 Word Splitter
1: function SPLIT_WORD(secret_match, words_list)
2: ▷ Split by punctuation
3: tokens ← split(secret_match, ’[._{}#$%&̂]’)
4: tokens ← filter(tokens, length ≥ 1) ▷ Remove empty strings
5: new_tokens ← ∅
6: for all token in tokens do
7: if token /∈ words_list and length(token) > 5 then
8: ▷ Split long tokens
9: split_tokens ← wordninja.split(token)

10: ▷ Filter short split tokens
11: split_tokens ← filter(split_tokens, length > 2)
12: extend(new_tokens, split_tokens)
13: else
14: append(new_tokens, token) ▷ Keep token if already valid
15: end if
16: end for
17: return new_tokens
18: end function

Appendix B.
Secret Relationship

We assume two matched strings, α and β, with the
following possible scenarios:
• Case 1: α is a substring of β: For each file, we traverse

and analyze the relationships among the secrets, docu-

menting those that qualify as substrings. Subsequently,
we filter out these substrings to derive the final candidate
secrets (❹ in Figure 1).

• Case 2: α equals β: In such a situation, we need to
determine a unique secret at the same position. Since
different types of secrets have different filtering proper-
ties, we cannot immediately decide which secret should
be retained. The final decision will be determined during
the process of merging similar secrets (❽ in Figure 1).

• Case 3: α and β intersect: In this situation, similarity
algorithms can assess whether two secrets are similar,
thereby determining if they represent the same secret. If
they are indeed the same, this situation aligns with Case
2.

• Case 4: α and β do not overlap: In such a situation, all
secrets are directly retained.

Algorithm 3 Tokenization-based Semantic Filter
1: function TBS_FILTER(secret, words_list, secret_fixed_prefixes)
2: secret.word_weight ← 0
3: have_meaning ← False
4: ▷ Split the candidate secret to words list.
5: words_list ← split_word(secret.value, words_list)
6: more4 ← 0 ▷ Counter of words with length > 4
7: for all k in words_list do
8: if k in secret_fixed_prefixes then
9: continue ▷ Skip words within the secret

10: end if
11: secret.word_weight ← secret.word_weight + length(k)
12: if length(k) > 4 then
13: more4 ← more4 + 1
14: end if
15: if length(secret.value) ≤ 30 and more4 > 0 then
16: have_meaning ← True
17: return have_meaning
18: else if 30 < length(secret.value) ≤ 60 and more4 > 1 then
19: have_meaning ← True
20: return have_meaning
21: end if
22: if secret.word_weight / length(secret.value) > 0.35 then
23: have_meaning ← True
24: return have_meaning
25: end if
26: end for
27: return have_meaning
28: end function

Appendix C.
Detailed Results of Secret Detection on Differ-
ent Platforms

To assess filter performance across platforms, we con-
ducted ablation studies on GitHub, PyPI, and WeChat
datasets by removing each filter and observing changes in
precision, recall, and F1 scores. Table 13 shows the results
and the F1 score changes (δF1) relative to the full system,
highlighting each filter’s contribution. Table 14 compares the
precision, recall, and F1 scores of various secret detection
tools on GitHub, PyPI, and WeChat, offering a concise
cross-platform performance overview.

17

TABLE 13: Results of filter ablation experiments across different platforms.

Platform Method Precision Recall F1 δF1 ↓ Filter Objects

GitHub

(w/o) T6: Prefix 50.64% 84.97% 0.6346 -0.2234 Unstructured secret
(w/o) T3: Seg-Entropy 66.58% 83.55% 0.7410 -0.1170 Machine-generated secret
(w/o) T4: TBS 70.89% 81.60% 0.7587 -0.0993 Machine-generated secret
(w/o) T5: PWD 80.97% 81.93% 0.8145 -0.0435 Human-chosen secret
(w/o) T1: Str-assisted 83.97% 82.36% 0.8316 -0.0264 Structured file
(w/o) T2: Pattern 87.47% 81.63% 0.8445 -0.0135 Machine-generated secret
KEYSENTINEL 90.85% 81.29% 0.8580 0.0000 All

PyPI

(w/o) T6: Prefix 28.87% 85.79% 0.4320 -0.4390 Unstructured secret
(w/o) T4: TBS 43.76% 82.92% 0.5729 -0.2981 Machine-generated secret
(w/o) T3: Seg-Entropy 46.31% 82.47% 0.5931 -0.2779 Machine-generated secret
(w/o) T5: PWD 82.13% 83.08% 0.8260 -0.0450 Human-chosen secret
(w/o) T2: Pattern 84.76% 83.11% 0.8392 -0.0318 Machine-generated secret
(w/o) T1: Str-assisted 87.68% 85.09% 0.8636 -0.0074 Structured file
KEYSENTINEL 92.43% 82.35% 0.8710 0.0000 All

WeChat

(w/o) T4: TBS 10.30% 79.69% 0.1824 -0.6828 Machine-generated secret
(w/o) T3: Seg-Entropy 49.51% 79.20% 0.6093 -0.2648 Machine-generated secret
(w/o) T5: PWD 78.52% 78.91% 0.7871 -0.0781 Human-chosen secret
(w/o) T6: Prefix 74.50% 94.56% 0.8334 -0.0318 Unstructured secret
(w/o) T1: Str-assisted 90.64% 81.92% 0.8606 -0.0035 Structured file
(w/o) T2: Pattern 95.03% 79.01% 0.8628 -0.0024 Machine-generated secret
KEYSENTINEL 89.91% 83.38% 0.8652 0.0000 All

δF1 ↓: Difference in F1 score compared to KEYSENTINEL.

TABLE 14: Comparison of secret detection tools across different platforms.

Tool Platform Raw Output Unique Secret Normalization
Reported Precision Recall F1 # Reported Precision Recall F1

Ggshield
GitHub 2,376 74.07% 20.90% 0.3260 1,471 77.43% 26.91% 0.3994
PyPI 133 2.56% 2.85% 0.0270↓ 133 42.11% 3.55% 0.0655↓
WeChat 17 76.47% 1.37% 0.0269↓ 14 78.57% 1.64% 0.0322↓

Gitleaks
GitHub 7,618 61.29% 55.95% 0.5850 4,948 58.95% 63.93% 0.6134
PyPI 10,143 16.69% 55.76% 0.2569↓ 10,143 9.26% 59.79% 0.1603↓
WeChat 9,331 9.06% 87.56% 0.1641↓ 8,002 7.16% 85.52% 0.1321↓

TruffleHog
GitHub 48,994 1.68% 12.27% 0.0296 25,695 2.66% 14.40% 0.0449
PyPI 3,940 6.17% 11.73% 0.0809↑ 3,940 4.44% 13.95% 0.0674↑
WeChat 62 20.97% 1.47% 0.0275↓ 37 32.43% 1.94% 0.0366↓

Repo-supervisor
GitHub 54,451 0.35% 3.08% 0.0064 36,608 0.18% 1.41% 0.0032
PyPI 95,083 0.05% 2.60% 0.0010↓ 95,083 0.05% 2.88% 0.0010↓
WeChat 488,852 0.07% 42.51% 0.0014↓ 372,789 0.07% 38.96% 0.0014↓

Git-secret
GitHub 181 2.76% 0.06% 0.0012 98 23.47% 0.53% 0.0103
PyPI 240 0.00% 0.00% 0.0000↓ 240 3.75% 0.55% 0.0096↓
WeChat 2 0.00% 0.00% 0.0000↓ 1 0.00% 0.00% 0.0000↓

Whispers
GitHub 21,652 5.05% 22.55% 0.0826 5,066 16.52% 18.32% 0.1737
PyPI 10,286 1.83% 6.25% 0.0283↓ 10,286 1.23% 7.83% 0.0213↓
WeChat 71 35.21% 2.64% 0.0492↓ 63 34.92% 3.28% 0.0600↓

KEYSENTINEL

GitHub 6,784 90.85% 81.29% 0.8580 3,886 89.37% 82.70% 0.8591
PyPI 2,749 92.43% 82.35% 0.8710↑ 1,480 90.74% 84.65% 0.8759↑
WeChat 902 89.91% 83.38% 0.8652↑ 587 92.72% 80.18% 0.8600↑
Note: Arrows show performance changes vs. GitHub: ↑ improvement, ↓ decline.

18

Appendix D.
Meta-Review

D.1. Summary

This paper proposes a new framework for leaked secret
detection, which leverages a set of 910 carefully manually
crafted regular expressions. A benchmark, consisting of 11K
labeled secrets across 1.8M files from GitHub, PyPI, and
WeChat, is developed and used to evaluate the framework,
achieved an F1 score of 0.86, notably outperforming ex-
isting tools and LLMs like GPT-4 in precision and recall.
Additionally, the authors conducted an ablation study and
processed 80M files from public repositories, finding that
30% of repositories contain secrets.

D.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Provides a New Data Set For Public Use
• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) A key-consideration in the acceptance of this work was
the section comparing the paper’s approach to common
LLMs in terms of efficiency and detection performance.
Several reviewers were convinced that this aspect, even
though tangential to the paper itself, is the actual key
contribution providing notable value to the community.

2) Beyond the comparison to LLMs, the paper presents
a diligent with which it successfully raises the bar in
terms of leaked secret detection capabilities. With that,
it does not only provide a valuable step forward in an
established field, but also contributes a new base-line
against which future non deterministic secret detection
methods (LLM, ML) can be benchmarked.

3) Beyond providing a base-line, the paper documents a
benchmarking methodology which will be valuable in
future work.

D.4. Noteworthy Concerns

1) Despite a generally positive perspective on the method,
some reviewers raised concerns about the manual la-
beling in terms of reliability and scalability.

2) While the improvements on secret detection are no-
ticeable, the general approach is the direct, yet work-
intensive, application of established principles, i.e., the
approach itself is considered not sufficiently novel by
some reviewers.

Appendix E.
Response to the Meta-Review

We sincerely thank the reviewers for their detailed and
constructive comments. Below, we address their major con-
cerns point by point.

Regarding Concern 1: We acknowledge that the dataset
labeling process cannot be entirely free from manual in-
volvement. However, we did not label secrets directly from
the raw files by hand. Instead, we employed existing secret
detection tools to label the extracted candidates, thereby
reducing manual workload. To ensure a fair and compre-
hensive comparison in our experiments, we used the largest
number of extraction methods (seven tools in total) to max-
imize the coverage of potential secrets. This approach also
enables future researchers to further expand the dataset using
newer tools.

Moreover, during the labeling process, we observed
many recurring secret patterns (see Section 3.2). These can
be leveraged to design automated filtering strategies based
on pattern matching, further reducing the need for manual
effort. Consistency checks between different labellers can
also be used to assess the quality and reliability of the
labeling results.

Regarding Concern 2: Our filtering method is not a sim-
ple aggregation of existing techniques; rather, it introduces
novel strategies that have not been proposed or explored in
prior work. As detailed in Section 4.4, we enhanced several
existing techniques (T2, T3, T4, and T5) and proposed two
new strategies (T1 and T6) to address critical challenges
left unresolved by previous studies. Specifically, T1 is our
original design to mitigate false positives caused by incom-
plete or truncated secret content, and T6 is another newly
introduced strategy to reduce errors arising from prefix
mismatches—both of which are first proposed in this work.
As demonstrated by the ablation experiments in Section 6.1,
these new strategies significantly improve filtering accuracy
and represent key contributions beyond existing methods.

19

	Introduction
	Background & Related Work
	Background
	Secret Detection
	Secret Benchmark Dataset
	Secret Leakage Measurement

	Dataset & Benchmark
	Building the Raw Dataset
	Building the Benchmark Dataset

	Design of KeySentinel
	Motivation
	Overview
	Secret Extraction
	Secret Filter

	Implementation
	Evaluation
	Evaluation of KeySentinel
	Comparative Evaluation
	Comparison with LLMs

	Measurement
	Cross Platform Measurement
	Handling of Leaked Secrets
	Secret Detection in the Real-world Company
	Case Studies

	Discussion
	Ethics and Responsible Disclosure
	Lessons Learned
	Good Practices
	Limitation

	Conclusion
	References
	Appendix A: Algorithm Descriptions for the TBS Filter (T4)
	Appendix B: Secret Relationship
	Appendix C: Detailed Results of Secret Detection on Different Platforms
	Appendix D: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix E: Response to the Meta-Review

