
MiniBLE: Exploring Insecure BLE API Usages in Mini-Programs
Zidong Zhang

Simon Fraser University; Shandong University

Burnaby, Canada

zza323@sfu.ca

Jianqi Du

Shandong University

Qingdao, China

dujianqi@mail.sdu.edu.cn

Wenrui Diao
∗

Shandong University

Qingdao, China

diaowenrui@link.cuhk.edu.hk

Jianliang Wu
∗

Simon Fraser University

Burnaby, Canada

wujl@sfu.ca

Abstract
As the ecosystem of emerging mini-programs rapidly develops, an

increasing number of IoT devices, particularly BLE devices, are pro-

viding accompanying mini-programs as a convenient means for end

users to control these IoT devices. The associated security issues

have also attracted researchers’ interest recently. However, exist-

ing research on mini-program security primarily focuses on their

permissions, common development bugs, and cross-mini-program

communications with little attention on interactions between mini-

program and IoT devices. We propose MiniBLE, a static taint anal-

ysis tool for analyzing BLE mini-programs, focusing on detecting

insecure BLE pairing issues. MiniBLE was used to analyze 41,276

real-world mini-programs, demonstrating its effectiveness in identi-

fying potential vulnerabilities.We showMiniBLEwith some prelim-

inary results and a real-world case study in this work-in-progress

(WIP) paper.

CCS Concepts
• Security and privacy→ Software and application security.

Keywords
Mini-program Security; Program Analysis; BLE Security

ACM Reference Format:
Zidong Zhang, Jianqi Du, Wenrui Diao, and Jianliang Wu. 2024. MiniBLE:

Exploring Insecure BLE API Usages in Mini-Programs. In Proceedings of
the ACM Workshop on Secure and Trustworthy Superapps (SaTS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3689941.3695774

1 Introduction
Mini-programs, which are lightweight applications within a super

or host app, have become significant in mobile computing due to

their convenience and functionality. The worldwide popularity of

∗
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SaTS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1237-1/24/10

https://doi.org/10.1145/3689941.3695774

mini-programs, hosted by platforms such as WeChat [5], Baidu [3],

Alipay [1], and TikTok [6], highlights the increasing concerns re-

garding their security and privacy.

Among those platforms, the WeChat mini-program platform, an

integral feature of the WeChat ecosystem developed by Tencent,

is the most popular. The mini-programs on WeChat, which are

built on a JavaScript-based WebView engine and operate within the

super app (i.e., WeChat), enable users to access various services, in-

cluding e-commerce, gaming, and utility tools. In addition, WeChat

mini-programs can possess hardware connectivity features, such

as Bluetooth Low Energy (BLE) [11], Near Field Communication

(NFC) [18], and WiFi [19]. Among these features, the BLE imple-

mentation in WeChat mini-programs presents notable security and

privacy challenges, particularly regarding interaction protocols

with IoT devices due to the universal application of BLE in IoT

devices.

Existing research has primarily assessed the security of mini-

programs from the perspective of mobile apps, like permissions poli-

cies [34], common development bugs [31], and cross-mini-program

communications [33]. Wang et al. developed TaintMini [29] and

Li et al. [25] created MiniTracker, both for tracking sensitive data

flow in mini-programs, while Wang et al. also developed APID-

IFF [30] was designed to detect API execution differences across

platforms. However, security issues related to the BLE capabilities

of mini-programs have received little attention in existing research.

In this work, we focus on the insecure BLE API usage in WeChat

mini-programs, highlighting the security risks of IoT devices within

this ecosystem. We designed an automated analysis framework,

MiniBLE, to detect potential BLE security issues in WeChat mini-

programs. MiniBLE is designed to automatically collect and filter

BLE-related mini-programs and analyze BLE security issues. Thus,

we conducted a preliminary large-scale analysis of 41,276 collected

mini-programs. Among those mini-programs, we filtered 1,316 BLE

mini-programs and found that 1,099/1,316 (83.5%) mini-programs

had potential BLE security issues.

2 Background
2.1 WeChat Mini-Program Architecture
WeChat offers a versatile platform for delivering mini-programs

without installation. These mini-programs enable users to access

various services, including e-commerce, gaming, and utility tools.

The architecture of a WeChat mini-program is bifurcated into two

primary components, as delineated in Figure 1: (1) the front-end,

https://doi.org/10.1145/3689941.3695774
https://doi.org/10.1145/3689941.3695774

SaTS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, Jianqi Du, Wenrui Diao, and Jianliang Wu

Super App (Host App): WeChat

Fr
on
t-
en
d

Ba
ck
-e
nd

The Render Layer

Data

WXML

WXSS

Event
 Device API

The Logic Layer
(Js-Based)

...

Developers Server/WeChat Server

... ...
BLE Devices

WeChat Mini-program

Figure 1: WeChat mini-program architecture.

which operates within the super app, facilitating user interaction

and access to system services; and (2) the back-end, which provides

the runtime environment and manages server-side operations.

AWeChatmini-programs source code [4] is composed of JavaScript,

WXML (WeiXin Markup Language) [8]. The front-end of the mini-

program is further subdivided into the render layer and the logic

layer [7]. The render layer employs WXML templates and WXSS

for structuring and styling the user interface, while the logic layer

utilizes JavaScript for handling application logic. These layers are or-

chestrated by aWebView thread for the render layer and a JavaScript

thread for the logic layer. To utilize BLE to communicate with the

IoT device, the mini-program invokes WeChat BLE APIs in back-

end Js files, which further trigger WeChat to invoke BLE APIs of

the operating system.

2.2 BLE Mini-program Application
A mini-program utilizes the interfaces encapsulated uniformly by

WeChat to use the hardware’s Bluetooth capabilities. Currently,

WeChat mini-programs only support Bluetooth Low Energy (BLE)

with host mode, peripheral mode, and BLE Beacons. The following

steps must be followed to use Bluetooth capabilities in a WeChat

mini-program:

• Initialize Bluetooth Adapter: A mini-program uses wx.o
penBluetoothAdapter [11] to enable Bluetooth first (other

Bluetooth-related APIs must be called after this API is invoked).

• Discover and Connect to Peripheral Devices: The API wx.s
tartBluetoothDevicesDiscovery [17] is used to search for

nearby Bluetooth peripheral devices (AdBP). After starting the

discovery process, the mini-programs can find target devices

from all discovered devices using wx.onBluetoothDeviceFo
und [16]. Subsequently, the mini-program stops the discovery

process with wx.stopBluetoothDevicesDiscovery [20]

and establishes a connection to the identified BLE device using

wx.createBLEConnection [11].

• Interact with Peripheral Devices: After connecting to the

device, the mini-program can retrieve all services of the BLE

device using wx.getBLEDeviceServices [13], obtain service

characteristics using wx.getBLEDeviceCharacteristics [12],

subscribe to and notify characteristics using wx.notifyBLECh

WeChat
Client

User Actions
Simulator

Au
to

I.Mini-program Collection

II. Mini-program Filter

wxunpacker

III. BLE Mini-program
Security Analysis

Result

Source Code
AST

 BLE API
Calls

Pairing API
CallsFound

in AST

PIN

Filtered
Found
in AST

BLE
Mini-programs

Figure 2: The Workflow ofMiniBLE.

aracteristicValueChange [15], or write to characteristics

using wx.writeBLECharacteristicValue [21].
• Close BluetoothAdapter: The Bluetooth adapter can be closed
by calling wx.closeBluetoothAdapter [10] or when the mini-

program is destroyed.

Comparison with Android BLE APIs. On Android, BLE APIs

of the WeChat mini-program platform are built on encapsulating

the underlying operating system’s BLE functionality. This encap-

sulation simplifies the operation of BLE devices within the mini-

program, allowing developers to implement complex BLE communi-

cation through simpler mini-program APIs. However, this encapsu-

lation restricts the flexibility of BLE operations in the mini-program.

The restriction also involves certain BLE security settings. For ex-

ample, Table 1 shows the BLE capabilities in the mini-program and

Android apps. Compared to Android apps, these mini-program BLE

APIs only support basic readable, writable, and encrypted forms of

data transmission, which might cause potential MITM attacks.

2.3 Insecure BLE Pairing in Mini-programs
In the BLE connection process, pairing plays a crucial role and is

the foundation for secure communication between the host and

peripheral devices. In mini-programs utilizing BLE, device IDs are

obtained through the Discovery process before initiating a connec-

tion using the API wx.createBLEConnection. The mini-program

and its operating system (OS) automatically handle the subsequent

pairing process. Besides using this API for connection and pairing,

developers can also use wx.makeBluetoothPair [14]. However,

the official WeChat documentation describes this API: "This inter-

face should be used only when the developer does not want the

user to enter the pin code manually, and real machine verification

confirmation can be used in normal working conditions." In other

words, this API allows developers to use a hard-coded PIN for the

Passkey Entry pairing method. Although the API is designed to pro-

vide a convenient pairing method, it essentially functions similarly

to the insecure method discovered by Sivakumaran et al. [27] in

Android: developers use the setPin API to input hardcoded PINs,

allowing users to bypass the manual PIN entry step during secure

pairing, thus introducing a security downgrade risk.

In conclusion, the relatively simple implementation of BLE-

related configurations and APIs in mini-programs means that the

security of associated IoT devices depends on the developer’s secu-

rity awareness. Developers may need to employ additional security

mechanisms to ensure secure interactions.

wx.openBluetoothAdapter
wx.openBluetoothAdapter
wx.startBluetoothDevicesDiscovery
wx.startBluetoothDevicesDiscovery
wx.onBluetoothDeviceFound
wx.onBluetoothDeviceFound
wx.stopBluetoothDevicesDiscovery
wx.createBLEConnection
wx.getBLEDeviceServices
wx.getBLEDeviceCharacteristics
wx.notifyBLECharacteristicValueChange
wx.notifyBLECharacteristicValueChange
wx.writeBLECharacteristicValue
wx.closeBluetoothAdapter
wx.createBLEConnection
wx.makeBluetoothPair
setPin

MiniBLE: Exploring Insecure BLE API Usages in Mini-Programs SaTS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Comparison of BLE Capabilities between WeChat Mini-Program and Android.

No. WeChat Mini-programs Description Android Apps Description
1 readable Readable PERMISSION_READ Readable

2 writeable Writable PERMISSION_WRITE Writable

3 readEncryptionRequired Encryption Read Request PERMISSION_READ_ENCRYPTED Read/Encrypted

4 writeEncryptionRequired Encryption Write Request PERMISSION_WRITE_ENCRYPTED Write/Encrypted

5 - - PERMISSION_READ_ENCRYPTED_MITM Read/Encrypted with MITM protection

6 - - PERMISSION_WRITE_ENCRYPTED_MITM Write/Encrypted with MITM protection

7 - - PERMISSION_WRITE_SIGNED Write/Signed

8 - - PERMISSION_WRITE_SIGNED_MITM Write/Signed with MITM protection

3 MiniBLE Design
We designed an automated analysis framework, MiniBLE, to detect

potential BLE security issues in WeChat mini-programs. In this

section, we first discuss our threat model and elaborate on the three

phases of MiniBLE: mini-program collection, BLE mini-program

filter, and BLE security analysis, as shown in Figure 2.

Threat Model. In this paper, we assume that the attacker possesses

the following capabilities: the attacker can intercept, modify, and

eavesdrop on all BLE packets transmitted over the air. The attacker

can also have physical access to the BLE device and obtain the

latest version of the BLE device’s mini-programs source code by

decompiling the mini-programs package. Lastly, when attacking,

the attacker is within the range of Bluetooth.

Mini-program Collection.: The first part of MiniBLE focuses on

collecting WeChat mini-programs. Crawling these mini-programs

is challenging due to the lack of official or third-party app markets

like Google Play for Android. Instead, users typically access mini-

programs through QR codes or searches within the WeChat client.

Similar to the previous work MiniCAT [37], we developed an

automated crawler that simulates user actions on the WeChat Win-

dows client. This crawler utilizes Natural Language Processing

(NLP) techniques to construct a keyword dictionary for searching

mini-programs and leverages metadata obtained via the WeChat

API to enhance the search process. The crawler then retrieves and

unpacks the mini-programs for further analysis, providing valuable

input for subsequent security evaluations. Furthermore, the crawler

retrieves mini-program packages from the user profile directory

and unpacks them into source code using wxappUnpacker [9] for
further analysis.

BLE Mini-programs Filter. To conduct a security analysis of BLE

mini-programs, MiniBLE first needs to extract BLE mini-programs

from the collected mini-programs. We found that in previous mea-

surement work targeting BLE companion mobile apps, Du et al. [22,

23] identified BLE companion apps based on the presence of Blue-

tooth permission declarations and Bluetooth API calls within the

apps. This inspired us to filter BLE mini-programs similarly by

searching for common characteristics.

As described earlier, a mini-program needs to call wx.openBluet
oothAdapter to enable the Bluetooth module, which is an essential

step to use BLE. MiniBLE uses the static analysis tool CodeQL to

generate an abstract syntax tree (AST) of the source code for each

crawled mini-program. It then searches for a callee node named

1 /* From: WeChat 8.0.40 for Android */
2 ...
3 k2.j(jVar.f295994r , "PAIRING_VARIANT_PIN", new Object

[0]);
4 if (jVar.f295991o == null) {
5 jVar.p(sR0.m.f307918v);
6 jVar.m();
7 return;
8 }
9 k2.j(jVar.f295994r , "setPin", new Object [0]);

10 if (! bluetoothDevice.setPin(jVar.f295991o) || jVar.
f295993q) {

11 return;
12 }
13 ...

Listing 1: Implementation of wx.makeBluetoothPair from
Decompile WeChat Android App.

wx.openBluetoothAdapter within the AST and filters out BLE

mini-programs without this node.

BLE Security Analysis. At this phase, MiniBLE primarily focuses

on the security issues related to the BLE pairing API mentioned

earlier. To verify whether the wx.makeBluetoothPairAPI causes a
security downgrade in IoT devices, we conducted a reverse engineer-

ing to the WeChat Android APK. Listing 1 shows the underlying

implementation of this API. We found that this API also called the

Android system-level API Bluetooth.setPIN, which is used to set

the PIN in Base64 encoding. Thus, any IoT device using this API in

a WeChat mini-program will downgrade to the insecure Just-Works

pairing method.

Therefore, this phase of MiniBLE can be translated into whether

the mini-program 1) calls the wx.makeBluetoothPair API, and

2) can obtain its mandatory parameter PIN. Specifically, MiniBLE

searches for a callee node named wx.makeBluetoothPair in the

AST. If the node is found, MiniBLE then extracts the value of its

parameter PIN. MiniBLE considers a mini-program vulnerable if

the PIN can be extracted.

4 Evaluations
In this section, we discuss the detection results of MiniBLE, and

present a case study with a real-world example.

Experiment Setup.Themini-program collection crawler ofMiniBLE

was deployed on a Windows 10 laptop (i7-9750H/32 GB RAM) with

Python 3.8.10. The static analysis of MiniBLE is performed on a

server running Ubuntu 20.04 with 32 CPU cores and 256 GB mem-

ory, utilizing 10 threads to analyze all mini-programs.

wx.openBluetoothAdapter
wx.openBluetoothAdapter
wx.openBluetoothAdapter
wx.makeBluetoothPair
Bluetooth.setPIN
wx.makeBluetoothPair

SaTS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, Jianqi Du, Wenrui Diao, and Jianliang Wu

1 /* Pairing with device */
2 wx.makeBluetoothPair ({
3 deviceId: deviceId ,
4 pin: wx.arrayBufferToBase64(new Uint8Array ([1, 2,

3, 4, 5, 6])),
5 success: (res) => {
6 console.log("makePair -success:", res)
7 },
8 fail: (err) => {
9 console.log("makePair -fail", err)

10 },
11 complete: (res) => {
12 console.log("makePair -complete", res)
13 }
14)}

Listing 2: Source code of a BLE Smart Lock Companion Mini-
program.

Dataset. We use the collected 44,273 WeChat mini-programs as

the dataset for our experiment, occupying a storage space of 126.38

GB.

Result Overview.After excluding non-unpackable mini-programs,

44,273 mini-programs were successfully unpacked into the source

code. Among those collected mini-programs, MiniBLE success-

fully analyzed 41,726 (94.2%) of them, identifying 1,316 (3.2%) mini-

programs using BLE APIs (i.e., BLE mini-programs).

Among those BLE mini-programs, MiniBLE found that 1,099

(83.5%) mini-programs used wx.makeBluetoothPair for pairing.

This reflects the widespread use of wx.makeBluetoothPair in BLE

mini-programs and highlights that many mini-programs may have

adopted simplified pairing mechanisms, potentially introducing

security risks.

Real-World Case Study. To validate the effectiveness of MiniBLE,

we manually analyzed a companion mini-program for a smart lock

based on the analysis results. Listing 2 shows the code snippet of this

mini-program calling wx.makeBluetoothPair and using "123456"

as the PIN, encoded in Base64 (using wx.arrayBufferToBase64).
This degrades the PassKey Entry method to Just Work, putting end

users at risk of MITM attacks.

During the BLE pairing process, an attacker can exploit an MITM

attack using a static and predictable PIN ("123456") encoded in

Base64. To conduct such an attack, the attacker positions them-

selves within the Bluetooth range of the victim’s smart lock and its

companion mini-program. Then, the attacker can easily eavesdrop

on the BLE communication by BLE dongles or sniffers. The static

PIN allows them to extract sensitive information, such as pairing

credentials, without complex techniques or tools.

5 Discussions

Limitations. Currently, MiniBLE has only detected insecure BLE

pairing issues in mini-programs. We will further discuss and inves-

tigate other potential BLE security issues. Additionally, MiniBLE

currently supports automated analysis of WeChat mini-programs

only. However, we have identified that other mini-program plat-

forms, such as Alipay mini-programs [2], also support BLE devices.

Since mini-programs on these platforms are WebView-based appli-

cations developed using JavaScript, MiniBLE can be easily extended

to analyze these platforms as well.

Ethical Considerations. To ensure ethical research practices, we

conducted proof-of-concept attacks only on our accounts, devices,

and mini-programs. When crawling mini-programs or using the

metadata API, we set a reasonable rate limit (i.e., 20 requests per

minute) to prevent server disruptions.

6 Related Work

Mini-Program Security. Zhang et al. [36] presented MiniCrawler

to analyze WeChat mini-programs resource consumption, API us-

age, and obfuscation rate. Lu et al. [26] identified security flaws

in app-in-app systems related to resource management. Wang et

al. [31] developed WeDetector to find bug patterns, uncovering 11

new bugs in 25 mini-programs. Zhang et al. [34] examined identity

confusion vulnerabilities in 47 super apps, finding all were sus-

ceptible. Yang et al. [33] introduced CMRFScanner, revealing that

50,281 WeChat mini-programs and 493 Baidu mini-programs are

vulnerable to Cross Miniapp Request Forgery (CMRF) attacks.

In contrast to the aforementioned research, our work focuses on

the BLE security issues in mini-programs. We developed MiniBLE

to evaluate the prevalence of these BLE security issues on a large

scale.

BLE Security. With the advancement of Bluetooth technology,

more security research efforts are focusing on BLE security vulner-

abilities. Wu et al. [32] targeted the BLE link-layer authentication

mechanism’s reconnection procedure, proposing a BLE spoofing

attack where an attacker can supply spoofed data to a previously

paired BLE client device by masquerading as a BLE server device.

Tschirschnitz et al. [28] exposed a design flaw in the inconsistent

association model of the BLE pairing process, enabling method

confusion attacks to easily achieve an MITM position between two

BLE devices. Additionally, there is growing research on BLE pri-

vacy leakage, including identity tracking attacks that exploit static

UUIDs [38], MAC addresses [35], and advertised packets [24].

7 Conclusion
Mini-programs have gained worldwide popularity due to their con-

venience and functionality. Despite their benefits, they present sig-

nificant security and privacy concerns, particularly with advanced

features like Bluetooth Low Energy (BLE). In this work, we specifi-

cally targeted BLE security issues in WeChat mini-programs. We

developed MiniBLE, an automated analysis framework designed

to detect potential BLE security issues in WeChat mini-programs.

Through a large-scale preliminary analysis of 41,276 collected mini-

programs, we identified 1,316 BLE mini-programs and found that

83.5% had potential BLE insecure pairing issues, demonstrating the

effectiveness of our approach.

Acknowledgements
This work was partially supported by the SFU Start-up Grant

(Grant No. N001305), Taishan Young Scholar Program of Shandong

Province, China (Grant No. tsqn202211001), Shandong Provincial

Natural Science Foundation (Grant No. ZR2023MF043), and Xiaomi

Young Talents Program.

wx.makeBluetoothPair
wx.makeBluetoothPair
wx.makeBluetoothPair
wx.arrayBufferToBase64

MiniBLE: Exploring Insecure BLE API Usages in Mini-Programs SaTS ’24, October 14–18, 2024, Salt Lake City, UT, USA

References
[1] Accessed: 2024-07-15. Alipay Mini-Program. https://global.alipay.com/pl

atform/site/product/mini-program
[2] Accessed: 2024-07-15. Alipay Mini-program: Bluetooth API Overview. https:

//miniprogram.alipay.com/docs/miniprogram/mpdev/api_device_bluet
ooth_bluetoothapioverview

[3] Accessed: 2024-07-15. Baidu Smart Program. https://smartprogram.baidu.c
om

[4] Accessed: 2024-07-15. Code Composition of a WeChat Mini Program. https:
//developers.weixin.qq.com/miniprogram/en/dev/framework/quicksta
rt/code.html

[5] Accessed: 2024-07-15. Tencent WeChat. https://www.wechat.com/en/
[6] Accessed: 2024-07-15. TikTok Mini-programs. https://www.tiktok.com/dis

cover/mini-programs
[7] Accessed: 2024-07-15. WeChat Mini Program Host Environment. https://deve

lopers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/fra
mework.html

[8] Accessed: 2024-07-15. WeChat Style Sheets (WXSS). https://developers.wei
xin.qq.com/miniprogram/en/dev/framework/view/wxss.html

[9] Accessed: 2024-07-15. wxappUnpacker. https://github.com/system-cpu/wx
appUnpacker

[10] Accessed: 2024-07-15. wx.closeBluetoothAdapter. https://developers.weixi
n.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.closeBluetoo
thAdapter.html

[11] Accessed: 2024-07-15. wx.createBLEConnection. https://developers.weixin.
qq.com/miniprogram/en/dev/api/device/bluetooth-ble/wx.createBLE
Connection.html

[12] Accessed: 2024-07-15. wx.getBLEDeviceCharacteristics. https://developers.w
eixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.getBLEDe
viceCharacteristics.html

[13] Accessed: 2024-07-15. wx.getBLEDeviceServices. https://developers.weixin.
qq.com/miniprogram/en/dev/api/device/bluetooth/wx.getBLEDeviceSe
rvices.html

[14] Accessed: 2024-07-15. wx.makeBluetoothPair. https://developers.weixin.
qq.com/miniprogram/en/dev/api/device/bluetooth/wx.makeBluetoothP
air.html

[15] Accessed: 2024-07-15. wx.notifyBLECharacteristicValueChange. https://deve
lopers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.
notifyBLECharacteristicValueChange.html

[16] Accessed: 2024-07-15. wx.onBluetoothDeviceFound. https://developers.wei
xin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.onBluetoot
hDeviceFound.html

[17] Accessed: 2024-07-15. wx.startBluetoothDevicesDiscovery. https://develope
rs.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.star
tBluetoothDevicesDiscovery.html

[18] Accessed: 2024-07-15. wx.startHCE. https://developers.weixin.qq.com/m
iniprogram/en/dev/api/device/nfc/wx.startHCE.html

[19] Accessed: 2024-07-15. wx.startWifi. https://developers.weixin.qq.com/m
iniprogram/en/dev/api/device/wifi/wx.startWifi.html

[20] Accessed: 2024-07-15. wx.stopBluetoothDevicesDiscovery. https://developers
.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.stopBl
uetoothDevicesDiscovery.html

[21] Accessed: 2024-07-15. wx.writeBLECharacteristicValue. https://developers.w
eixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.writeBLE
CharacteristicValue.html

[22] Jianqi Du, Fenghao Xu, Chennan Zhang, Zidong Zhang, Xiaoyin Liu, Pengcheng

Ren, Wenrui Diao, Shanqing Guo, and Kehuan Zhang. 2022. Identifying the ble

misconfigurations of iot devices through companion mobile apps. In 2022 19th
Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON).

[23] Jianqi Du, Zidong Zhang, Fenghao Xu, and Wenrui Diao. 2023. Living in the Past:

Analyzing BLE IoT Devices Based on Mobile Companion Apps in Old Versions.

In 19th International Conference on Mobility, Sensing and Networking, MSN 2023,
Nanjing, China, December 14-16, 2023.

[24] Aleksandra Korolova and Vinod Sharma. 2018. Cross-App Tracking via Nearby

Bluetooth Low Energy Devices. In Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy (CODASPY), Tempe, AZ, USA, March
19-21, 2018.

[25] Wei Li, Borui Yang, Hangyu Ye, Liyao Xiang, Qingxiao Tao, Xinbing Wang, and

Chenghu Zhou. 2023. MiniTracker: Large-Scale Sensitive Information Tracking

in Mini Apps. IEEE Transactions on Dependable and Secure Computing (2023).

[26] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFeng Wang,

and Xueqiang Wang. 2020. Demystifying Resource Management Risks in Emerg-

ing Mobile App-in-App Ecosystems. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS), Virtual Event, USA,
November 9-13, 2020.

[27] Pallavi Sivakumaran and Jorge Blasco. 2019. A Study of the Feasibility of Co-

located App Attacks against {BLE} and a {Large-Scale} Analysis of the Current
{Application-Layer} Security Landscape. In 28th USENIX Security Symposium
(USENIX Security 19).

[28] Maximilian Von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens

Grossklags. 2021. Method confusion attack on bluetooth pairing. In 2021 IEEE
symposium on security and privacy (SP).

[29] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-

mini: Detecting Flow of Sensitive Data in Mini-Programs with Static Taint Anal-

ysis. In Proceedings of the 45th IEEE/ACM International Conference on Software
Engineering (ICSE), Melbourne, Australia, May 14-20, 2023.

[30] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. One Size Does Not Fit All:

Uncovering and Exploiting Cross Platform Discrepant APIs in WeChat. In Pro-
ceedings of the 32nd USENIX Security Symposium (USENIX-Sec), Anaheim, CA,
USA, August 9-11, 2023.

[31] Tao Wang, Qingxin Xu, Xiaoning Chang, Wensheng Dou, Jiaxin Zhu, Jinhui

Xie, Yuetang Deng, Jianbo Yang, Jiaheng Yang, Jun Wei, and Tao Huang. 2022.

Characterizing and Detecting Bugs in WeChat Mini-Programs. In Proceedings of
the 44th IEEE/ACM 44th International Conference on Software Engineering (ICSE),
Pittsburgh, PA, USA, May 25-27, 2022.

[32] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave Jing Tian, Antonio Bianchi,

Mathias Payer, and Dongyan Xu. 2020. {BLESA}: Spoofing attacks against

reconnections in Bluetooth low energy. In 14th USENIX Workshop on Offensive
Technologies (WOOT 20).

[33] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross Miniapp Request Forgery:

Root Causes, Attacks, and Vulnerability Detection. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security (CCS), Los
Angeles, CA, USA, November 7-11, 2022.

[34] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen,

Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity Confusion in

WebView-based Mobile App-in-app Ecosystems. In Proceedings of the 31st USENIX
Security Symposium (USENIX-Sec), Boston, MA, USA, August 10-12, 2022.

[35] Yue Zhang and Zhiqiang Lin. 2022. When Good Becomes Evil: Tracking Bluetooth

Low Energy Devices via Allowlist-based Side Channel and Its Countermeasure. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi (Eds.).

[36] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang

Lin. 2021. A Measurement Study of Wechat Mini-Apps. In Proceedings of the
2021 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Virtual Event, China, June 14-18, 2021.

[37] Zidong Zhang, Qingsheng Hou, Lingyun Ying, Wenrui Diao, Yacong Gu, Rui Li,

Shanqing Guo, and Haixin Duan. 2024. MiniCAT: Understanding and Detecting

Cross-Page Request Forgery Vulnerabilities in Mini-Programs. In Proceedings of
the 2024 ACM SIGSAC Conference on Computer and Communications Security, Salt
Lake City, UT, USA. October 14-18, 2024.

[38] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2019. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019.

https://global.alipay.com/platform/site/product/mini-program
https://global.alipay.com/platform/site/product/mini-program
https://miniprogram.alipay.com/docs/miniprogram/mpdev/api_device_bluetooth_bluetoothapioverview
https://miniprogram.alipay.com/docs/miniprogram/mpdev/api_device_bluetooth_bluetoothapioverview
https://miniprogram.alipay.com/docs/miniprogram/mpdev/api_device_bluetooth_bluetoothapioverview
https://smartprogram.baidu.com
https://smartprogram.baidu.com
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/code.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/code.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/code.html
https://www.wechat.com/en/
https://www.tiktok.com/discover/mini-programs
https://www.tiktok.com/discover/mini-programs
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/framework.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/framework.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/framework.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/wxss.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/wxss.html
https://github.com/system-cpu/wxappUnpacker
https://github.com/system-cpu/wxappUnpacker
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.closeBluetoothAdapter.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.closeBluetoothAdapter.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.closeBluetoothAdapter.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth-ble/wx.createBLEConnection.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth-ble/wx.createBLEConnection.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth-ble/wx.createBLEConnection.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.getBLEDeviceCharacteristics.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.getBLEDeviceCharacteristics.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.getBLEDeviceCharacteristics.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.getBLEDeviceServices.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.getBLEDeviceServices.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.getBLEDeviceServices.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.makeBluetoothPair.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.makeBluetoothPair.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.makeBluetoothPair.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.notifyBLECharacteristicValueChange.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.notifyBLECharacteristicValueChange.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.notifyBLECharacteristicValueChange.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.onBluetoothDeviceFound.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.onBluetoothDeviceFound.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.onBluetoothDeviceFound.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.startBluetoothDevicesDiscovery.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.startBluetoothDevicesDiscovery.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.startBluetoothDevicesDiscovery.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/nfc/wx.startHCE.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/nfc/wx.startHCE.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/wifi/wx.startWifi.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/wifi/wx.startWifi.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.stopBluetoothDevicesDiscovery.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.stopBluetoothDevicesDiscovery.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.stopBluetoothDevicesDiscovery.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.writeBLECharacteristicValue.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.writeBLECharacteristicValue.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/device/bluetooth/wx.writeBLECharacteristicValue.html

	Abstract
	1 Introduction
	2 Background
	2.1 WeChat Mini-Program Architecture
	2.2 BLE Mini-program Application
	2.3 Insecure BLE Pairing in Mini-programs

	3 MiniBLE Design
	4 Evaluations
	5 Discussions
	6 Related Work
	7 Conclusion
	References

