
Living in the Past: Analyzing BLE IoT Devices
Based on Mobile Companion Apps in Old Versions

Jianqi Du∗†, Zidong Zhang∗†, Fenghao Xu‡§(�), and Wenrui Diao∗†(�)

∗School of Cyber Science and Technology, Shandong University

{dujianqi, kee1ongz}@mail.sdu.edu.cn, diaowenrui@link.cuhk.edu.hk
†Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University

‡Southeast University, xf016@link.cuhk.edu.hk §The Chinese University of Hong Kong

Abstract—Bluetooth Low Energy has been a widely adopted
communication technique in the consumer IoT market. Mean-
while, the security concerns of these BLE-enabled IoT devices
have garnered considerable attention. Instead of investigating the
device firmware directly, analyzing its companion mobile app
has been proven to be an effective approach for vulnerability
discovery. However, developers regularly release new versions of
these apps, making it more challenging to analyze and identify
vulnerabilities. As a result, this action raises the bar on launching
attacks on IoT devices. In our study, we found that the earlier
versions of the companion apps can still be exploited to attack
IoT devices. The key insight is that these devices usually lack
firmware update capabilities.

In our work, we performed attacks on three BLE-enabled IoT
devices by investigating the early versions of their companion
apps. We observed that manufacturers merely updated the
companion apps to increase the difficulty of reverse engineering
through code protection techniques without addressing the vul-
nerabilities presented in the device firmware. We then conducted
a large-scale measurement and confirmed that most BLE devices
can be analyzed from their old app versions. Furthermore, we
design an automated tool to help developers identify the risks
and improve the security of their apps. In our study, we also
discuss some mitigation solutions.

Index Terms—IoT security, firmware update, Bluetooth low
energy, Android app analysis

I. INTRODUCTION

Bluetooth Low Energy (BLE) was introduced by the Blue-

tooth Special Interest Group (SIG) as a low-energy alternative

to the classical Bluetooth technology in Bluetooth 4.0 [2].

Currently, it has become an important technology in the devel-

opment of IoT devices. These devices typically communicate

with a central control unit or a user’s smartphone through a

companion app. The companion app acts as an interface for

users to control, monitor, and configure the IoT device, making

it a critical component of the IoT system.

Although companion apps provide convenience, they also

come with a price. The security of these apps is often

overlooked, creating an exploitable interface for attackers to

compromise IoT devices [28]. For example, many companion

apps communicate with IoT devices over BLE, some of which

may lack proper encryption and authentication mechanisms.

Attackers can intercept and manipulate data exchanged be-

tween the app and the device through BLE, potentially leading

to unauthorized control or theft of sensitive information.

Therefore, companion apps must stay up to date with the latest

security updates and improvements. When vulnerabilities are

discovered in the companion app, developers can release new

versions of the app on the app market. Upgraded versions

may utilize code protection techniques to protect their source

code and prevent attackers from reverse engineering. Un-

fortunately, manufacturers and developers sometimes neglect

older versions of those apps [36], leaving them vulnerable to

malicious exploitation. Hackers capitalize on this weakness

because outdated apps may lack essential security protection,

making it easier for attacks such as unauthorized access.

The most effective way to mitigate the threat is to update

the IoT firmware with security patches via Over-The-Air

(OTA). However, we found that most IoT devices do not

have the capability to update their firmware. There are many

reasons for the absence of OTA capability. It could be that the

manufacturer chose a BLE chip without OTA functionality

or did not develop firmware upgrade functionality in their

companion app.

When firmware updates are impossible, developers and

vendors resort to using code protection techniques to prevent

reverse engineering of new app versions. Although these

countermeasures make apps difficult to analyze, vulnerabilities

still exist in the firmware of IoT devices. Based on this

observation, we found that old versions of companion apps are

more easily exploited to attack IoT devices, especially those

IoT devices that lack firmware update capability.

In this paper, our findings can help to efficiently identify

vulnerabilities in IoT devices. To demonstrate the effectiveness

of our findings, we provide three motivation examples. They

primarily show the successful exploitation of real-world IoT

devices using the old version. Motivated by the above cases,

we conducted a large-scale experiment on a dataset of 37,778

IoT apps and filtered out 11,045 BLE apps for further analysis.

It is astonishing that over 81% of BLE-enabled IoT devices

could potentially be influenced by this. The measurement

results show that our method has a wide range of applications.

We then developed a tool named BLESecurAssist to help

developers or users identify potential risks to IoT devices. Our

tool takes an app as input and automatically downloads its

older versions. In addition, it performs an automated analysis

of these outdated apps and outputs potential vulnerabilities in

the associated IoT devices.

317

2023 19th International Conference on Mobility, Sensing and Networking (MSN)

979-8-3503-5826-1/23/$31.00 ©2023 IEEE
DOI 10.1109/MSN60784.2023.00055

20
23

 1
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ob

ili
ty

, S
en

si
ng

 a
nd

 N
et

w
or

ki
ng

 (M
SN

) |
 9

79
-8

-3
50

3-
58

26
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
SN

60
78

4.
20

23
.0

00
55

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 02,2024 at 08:39:30 UTC from IEEE Xplore. Restrictions apply.

Contributions. In summary, our work makes the following

contributions.

• New Findings. We found that analyzing the early versions

of IoT companion apps is easier and more efficient,

which can assist in the discovery of vulnerabilities on

IoT devices. The key insight is that BLE devices usually

lack firmware update capabilities.

• Measurement and Case Study. To demonstrate the impact

of our findings, we performed a large-scale measurement

on an IoT app dataset (37,778). The result shows that we

can trace most BLE apps’ older versions, facilitating a

more practical security analysis.

• Tool Design and Discussion. We further integrate our

measurement technique into an analysis tool that could

help developers or users identify the potential risks of

IoT devices.

Roadmap. The rest of this paper is organized as follows.

Section II provides the necessary background. In Section III,

based on the threat model and identified security risks, we

present three motivating examples. The results are summarized

in Section IV. Section V gives the detailed design of BLESe-

curAssist. Mitigation suggestions are discussed in Section VI.

Section VII reviews the related works, and Section VIII

concludes this paper.

II. BACKGROUND

Bluetooth Low Energy (BLE) is a wireless communication

technology designed for low-power data transmission over

short distances. This section provides an overview of the

working principles of BLE, the concept of UUID (Universally

Unique Identifier) in BLE, and the OTA firmware update pro-

cess in BLE. Figure 1 illustrates the BLE workflow, including

the OTA firmware update process.

BLE Workflow. In the design of BLE, the typical com-

munication between two devices involves three stages: (1)

Advertising, (2) Scanning, and (3) Communication. The BLE

workflow can be summarized as follows:

1) Advertising: BLE devices use advertising packets to

broadcast their presence and capabilities to potential neighbor-

ing devices. The advertising packets contain essential informa-

tion for device discovery, such as device name, service UUIDs,

manufacturer-specific data, service data, and signal strength

indicator (RSSI). The device name allows for human-readable

identification, while the UUID aids in distinguishing the device

and its supported services. Manufacturer-specific data and

service data provide opportunities for customizing advertising

content that satisfies specific application requirements.

2) Scanning: The scanning process is a crucial operation in

the BLE protocol, enabling devices to discover and identify

nearby devices through the reception and interpretation of

advertising packets. Upon receiving an advertising packet, the

scanning device can extract and process the information it

contains. This information includes the device’s identification

details, signal strength, and other relevant data. The scanning

process facilitates the creation of a local database of nearby

Fig. 1: BLE Workflow and OTA Process

BLE devices, allowing the scanning device to determine

potential devices with which it may establish a connection.

3) Communication: After the scanning device finds a BLE

device of interest, it can initiate a connection with it. BLE

supports two types of connections: “Central” and “Peripheral”.

A Central device, like a smartphone or a laptop, initiates

the connection to a Peripheral device, such as a sensor or

a wearable device. Once the connection is established, these

devices can exchange data bi-directionally. BLE communi-

cation follows a client-server architecture, which means that

the Central device acts as the client, and the Peripheral

device acts as the server. Data exchange typically occurs

through “characteristics” and “services”, which are defined in

the Generic Attribute Profile (GATT). GATT specifies how

data can be structured and accessed between connected BLE

devices, allowing custom data transfer and device control.

BLE Security Measures. As BLE technology continues to

gain popularity, ensuring security is paramount. BLE incorpo-

rates various security features to protect sensitive data and

prevent unauthorized access. Some key security measures

include:

1) Encryption: BLE devices can encrypt data during com-

munication to ensure confidentiality. The encryption process

uses a shared key established during the pairing phase.

2) Pairing: Before establishing a connection, BLE devices

could undergo a pairing process. During pairing, devices

exchange security information and establish a trusted relation-

ship.

318

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 02,2024 at 08:39:30 UTC from IEEE Xplore. Restrictions apply.

3) Privacy: BLE devices utilize a privacy feature that can

periodically change the device’s Bluetooth MAC address,

making it harder for unauthorized parties to identify and track

the device over time.

BLE OTA Capability. BLE OTA Firmware Update is a

mechanism that enables wireless firmware update on BLE-

enabled devices. It allows device manufacturers to remotely

and securely push new firmware versions to devices, ensuring

they stay up-to-date with the latest features, bug fixes, and

improvements without needing physical connections. Some

key steps of the OTA firmware update are as follows:

1) OTA Mode Activation: The device must have a mecha-

nism to enter the OTA mode. This can be triggered through

a specific command, a button combination, or a remote BLE

connection. In OTA mode, the device is ready to receive the

new firmware.

2) Firmware Validation: During the download process, the

target device may perform integrity checks and verify the

authenticity of the incoming firmware to ensure it hasn’t

been tampered with during transmission. This step is crucial

for ensuring security and preventing unauthorized firmware

updates.

3) Firmware Installation: Once the complete firmware is

downloaded and verified, the target device proceeds with

installation. After the new firmware is successfully installed,

the target device typically performs a system reset or reboot

to activate the updated firmware.

III. THREAT MODEL AND MOTIVATING EXAMPLES

In this section, we first outline the threat model that our

work is based on. We then introduce the motivation of our

research by presenting three real-world cases based on the

threat model. These cases aim to highlight the key insights of

our approach.

A. Threat Model

In this paper, we assume that the attacker has the following

practical capabilities. The nearby attacker can sniff all BLE

packets transmitted over the air and have physical access to

the BLE device. An attacker can obtain the IoT device’s early

version of the app. The attacker can extract control commands

or other sensitive information from the poorly protected early

versions of apps. In the threat model, the attacker mainly

uses eavesdropping and replay attacks to gain unauthorized

access to IoT devices. These attacks can be launched using

a Bluetooth dongle, such as the CC2540 sniffer from Texas

Instrument [4].

B. Motivating Examples

In this section, we discuss attack instances targeting three

BLE-enabled IoT devices. These devices are vulnerable to

exploitation through old versions of their companion apps. To

help better understand, Figure 2 shows the attack flow in the

first case.

1) Smart Lock. OKLOK is a smart lock vendor with

thousands of users of its products. Their BLE smart lock

Fig. 2: Attack Flow.

enables users to unlock and manage permissions through a

companion app on their mobile devices.

To investigate the authorization between OKLOK’s lock and

its app, we first downloaded the latest companion app from

the Android app market. After we decompiled the app with

the state-of-the-art reverse tool JADX [9], we found that the

app was developed with the uni-app, a framework that uses

WebView to create mobile apps. Through further analysis,

we found that the manufacturer’s cloud servers host the core

code in the app, and the interaction is implemented in the

native code of the app. In other words, we cannot restore the

authorization process by reversing the app since we cannot

access the source code.

However, we discovered that an older version of the com-

panion app could also control the same lock, so we turned

our attention to the app in the early version for this lock.

After obtaining the earlier version from the Wandoujia [21]

App market, we performed a manual analysis. We found that

the unlock function was developed in Java without any code

protection. As a result, it can be easily reverse-engineered and

analyzed. Figure 3 illustrates the unlocking mechanism. When

the user presses the unlock button in the app, the mobile client

will send an open request to the smart lock via BLE. After

the lock receives the request, it sends a nonce as a token to

the mobile. Then, the app will utilize the token and other

information to construct a valid open command, which will

be sent as a response to the lock. If they are equal, the lock

will open. In summary, this process is typically a Challenge-

Response authentication.

To reproduce the above authorization process, we used a

BLE dongle to connect the locks and inspect packet com-

munication between the communication. After obtaining the

random token from the lock, we generated a valid command

by following the process we reversed from the app. After we

sent the generated command to the lock, we received a success

message from the lock and found that it was unlocked. Thus,

we succeeded in gaining unauthorized access to the lock by

analyzing the old version of the companion app.

2) Smart Bulb. LifeSmart provides a wide range of IoT

smart devices and allows users to control and manage them

with a companion app. Users can use the accompanying app

to switch it on and off, change colors, and other functions.

319

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 02,2024 at 08:39:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The Unlock Process of a Smart Lock.

Like OKLOK, we also want to analyze the communication

between the smart bulb and the client through the accompany-

ing app. When we got the latest version of the companion app

from the official Google Marketplace, we found that the app

kept all its core code in .so library files in the form of native

code. In other words, it is not easy to analyze these files to

obtain a trace of the BLE communication process to control

the bulb.

Inspired by OKLOK’s case, we downloaded the old version

of LifeSmart’s companion app from Wandoujia. By manually

analyzing, we found that it can easily be reversed. After

restoring their BLE communication flow, we could utilize

a BLE dongle to connect with the bulb and construct the

corresponding commands to achieve unauthorized control over

it.

3) Smart WristBand. Our third attack target was a smart

band called Lefun, which is a wearable device that allows users

to monitor their daily physical activities and fitness levels. The

band uses BLE communication to transfer data and sync with

its companion app, including mobile message synchronization.

We found that when the phone synced a long message, it would

be truncated before displaying on the band. This inspired us to

see if we could bypass this mechanism and crash the bracelet

by sending a malformation message.

After analyzing the latest app, we found that it utilized code

obfuscation techniques, making it challenging to locate the

target code. Fortunately, we found that it did not use any code

protection in the early version of the app, which allowed us to

reverse the target code and forge a valid message transmitted

to the band easily.

Through further analysis, we found that excessively long

messages would complete truncation in the app before being

sent to the band. However, the band crashed after we used the

BLE dongle to send a valid over-length message to it, which

proves that the band’s firmware does not check the message

length, leading to the overflow.

IV. PROBLEM AND ANALYSIS

A. Research Questions

By observing the aforementioned attack examples, it in-

spires us to figure out why this approach is effective. Thus,

we propose the following research questions and provide our

insights on each.

Q1) Why are the vulnerabilities discovered in the early
versions still exploitable? The vulnerabilities discovered in

early versions remain effective for IoT devices mainly because

manufacturers have not fixed the vulnerabilities in the device

firmware side. However, most IoT device firmware lacks the

ability to upgrade, so these vulnerabilities will hardly be fixed.

Q2) Why are the vulnerabilities more easily discovered in
early versions than in upgraded versions? The early app

versions will use more code protection techniques to prevent

reverse engineering of their source code. However, earlier

versions usually did not pay much attention to the security

aspect during development, making it easier for attackers to

analyze the code.

Based on the two research questions, we conduct further

in-depth analysis. Regarding Q1, it is crucial to ascertain the

extent to which the security of IoT devices is affected by

the early app versions. Therefore, we conduct a large-scale

measurement on the firmware updating capabilities for BLE-

enabled IoT devices. As for Q2, we seek to understand what

kind of code protection techniques are employed in the up-

graded app versions. Hence, we need to acquire a collection of

companion apps for IoT devices, including both their latest and

older versions. Subsequently, we will conduct a comparative

analysis to determine the code protection techniques employed

by manufacturers. This will enable us to gain a comprehensive

understanding of the progress and improvements made by

different manufacturers in terms of app security.

B. Firmware Update Analysis

In this section, we conduct a large-scale measurement on the

firmware updating capabilities for BLE-enabled IoT devices.

Our experiment consists of the following steps:

1) Obtain a dataset of BLE devices’ companion APKs.

2) Collect OTA update strategies for different BLE SoCs.

3) Perform automatic analysis and output results.

BLE-Enabled IoT App Dataset. Since no large-scale dataset

is available for BLE-enabled IoT Android apps, we focus on

downloading these apps from the AndroZoo [22]. However,

Androzoo does not provide any information indicating an

app’s classification as a BLE-enabled IoT application. The first

challenge is to determine how to identify these apps as IoT

apps. Jin et al. [27] proposed a framework named IoTSpotter,

which automatically constructs a market-scale snapshot of

mobile-IoT apps, and also provided an IoT app dataset filtered

from the AndroZoo. We decided to utilize the IoT app dataset

and filter out the IoT apps related to BLE. Firstly, we begin

320

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 02,2024 at 08:39:30 UTC from IEEE Xplore. Restrictions apply.

by filtering out apps that declare Bluetooth permissions (i.e.,

BLUETOOTH and BLUETOOTH_ADMIN). As apps filtered

based on Bluetooth permissions may contain Bluetooth Classic

and BLE, we subsequently utilize BLE-related classes (e.g.,

android.bluetooth.BluetoothGatt) as an additional criterion to

further refine the filtering process for identifying BLE apps.

It should be noted that first filtering by Bluetooth permissions

and then filtering by the BLE libraries can effectively improve

the overall process speed. The advantage lies in the fact that

permission checking relies on the app Manifest files without

the need to disassemble code.

BLE SoCs OTA. Bluetooth Low Energy System-on-Chips

(BLE SoCs) are small, low-power, and highly integrated

solutions that combine the functionalities of a microcontroller,

a Bluetooth radio, and other peripherals into a single chip. BLE

SoCs are available in numerous models and brands, with dis-

tinct features and application range. Selecting the appropriate

BLE SoC depends on the project’s specific requirements, such

as power consumption, processor performance, OTA update,

and other functionalities. OTA updates allow devices to receive

firmware or software updates wirelessly without the need for

physical connections. There are several manufacturers that pro-

duce SoCs that support OTA functionality [19], such as Nordic

Semiconductor, Texas Instruments, and so on. Through the

manufacturers’ provided instructions and guidelines, we find

that these SoCs support OTA updates using a specific UUID.

The UUID serves as a unique identifier for the OTA service,

which facilitates firmware or software updates wirelessly over

the BLE. Therefore, if an IoT vendor wants to update their

devices’ firmware through the companion app, it needs to hard-

code the specific UUIDs in their app.

We have collected firmware upgrade strategies from ten

leading Bluetooth chip suppliers with the highest market share

in the Bluetooth industry. They offer the most comprehensive

SDKs and documentation. Table I lists the OTA update service

UUIDs by SoCs vendors.

To extract all static UUIDs hardcoded within the APK file

from the dataset, we employ Androguard [1] for analyzing

apps. Androguard is a widely used open-source tool specif-

ically designed for static analysis of Android apps. After

completing the extraction of UUIDs for each app, we further

examine these UUIDs to determine if there are any matches

with the OTA-related UUIDs we previously collected. If we

discover such OTA-related UUIDs within the App, it confirms

that the corresponding IoT device for this App is capable of

firmware upgrades.

Environment setup. Our evaluation was performed on a Linux

server running Ubuntu 20.04, powered by an Intel Xeon 6226R

@ 2.90GHz processor and with 256GB of memory.

Measurement Result. We downloaded 37,778 IoT apps from

Androzoo using the SHA256 indexes provided by Jin et al.

From the dataset, we filtered out 11,045 BLE-enabled IoT

apps. Among these, 2,039 apps contained at least one UUID

related to OTA. Therefore, more than 81% of IoTs cannot

TABLE I: Firmware Update UUIDs

Manufacturer OTA Service UUID(s)
Nordic[10] 0x0000FE59-0000-1000-8000-00805F9B34FB

0x8E400001-F315-4F60-9FB8-838830DAEA50

0x00001530-1212-EFDE-1523-785FEABCD123

Texas[20] 0xF000FFC0-0451-4000-B000-000000000000

SiliconLabs[15] 0x1D14D6EE-FD63-4FA1-BFA4-8F47B42119F0

Renesas[13], [14] 0x9D5998F8-105B-4691-92BE-4B1B4D3EE8BB

0x00010203-0405-0607-0809-0A0B0C0D1912

STM[16], [17] 0x0000FE20-CC7A-482A-984A-7F2ED5B3E58F

0x8A97F7C0-8506-11E3-BAA7-0800200C9A66

NXP[11] 0x0000FEE8-0000-1000-8000-00805F9B34FB

Cypress[7] 0x00060000-F8CE-11E4-ABF4-0002A5D5C51B

Espressif[8] 0x00008018-0000-1000-8000-00805F9B34FB

0x1775244D-6B43-439B-877C-060F2D9BED07

Qualcomm[5], [6] 0x00001100-D102-11E1-9B23-00025B00A5A5

0x00001016-D102-11E1-9B23-00025B00A5A5

Telink[18] 0x00010203-0405-0607-0809-0A0B0C0D1912

Realtex[12] 0x00006287-3C17-D293-8E48-14FE2E4DA212

0x0000D0FF-3C17-D293-8E48-14FE2E4DA212

Fig. 4: BLE SoC Vendors Occupy Ratio

support OTA upgrades. Figure 4 shows the average ratio of

SoCs usage.

C. Old Version and Code Protection

To provide a more comprehensive response to Q2, we

conduct a comparative analysis between the older and newer

versions of IoT companion apps. This comparative study aims

to figure out the techniques implemented by manufacturers in

the new app version to make it more resistant to vulnerability

detection compared to the older version. To analyse the old

versions of companion apps, the first challenge is how to

obtain them. One legitimate method is to download from third-

party app stores that host older versions of apps. Wandoujia

was a popular third-party Android app market in China. The

most unique feature of Wandoujia compared with other third-

321

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 02,2024 at 08:39:30 UTC from IEEE Xplore. Restrictions apply.

party app marketplaces is that it provides the download of

historical versions of an app.

Once the relevant apps were downloaded from Wandoujia,

our next step was to select a few of them for manual analysis.

To better understand distinctions among these applications,

we used the JADX tool, specially designed for reverse en-

gineering. By decompiling the APKs, we gained access to the

Java code of both the old and new versions of the apps. The

subsequent stage involved conducting a comparative analysis

of the Java code between the older and recent iterations. We

have outlined the evolution of these companion apps in the

following.

• Code Obfuscation. Code obfuscation [24] is a process

of making code harder to read or understand without

changing its functionality. It is often used in Android app

development to protect the code from reverse engineering

and unauthorized access. We found through comparing

old and new versions that this is the most widely adopted

code protection technology.

• App Packing. In software development and security,

App Packing (Encryption) is a common security measure.

During our analysis, We found that this technology was

generally not adopted in the old version. We consider that

this is due to the higher performance requirements of the

phone in older versions.

• Java Native Interface. Java Native Interface (JNI) is a

framework that enables Java code to call and be invoked

by native apps and libraries written in other languages,

such as C, C++, and assembly. We found that in the new

version, programmers use JNI technology to protect the

code, while in the old version, it was generally written

in Java code.

• Webview. WebView is a core component of the Android

operating system that allows developers to embed web

content (such as HTML, CSS, and JavaScript) into their

Android apps. We found that in the old version, a lot

of data was statically encoded within the APK, while in

the new version, data is loaded from the manufacturer’s

server. Undoubtedly, this has increased the difficulty of

static analysis of the App.

In Android app development, code protection is critical to

prevent unauthorized access and reverse engineering of an

app’s source code. That’s why finding vulnerabilities in older

versions is easier than newer ones.

V. DESIGN OF BLESECURASSIST

Based on the previous analysis, we have implemented a

framework – BLESecurAssist that integrates our measurement

technique. The purpose of developing this framework is to

assist developers or users in identifying potential risks of

their IoT devices. Moreover, the framework can identify BLE

misconfigurations in IoT devices.

The framework comprises three major components: old

versions downloader, OTA analysis, and misconfiguration

detection. The framework accepts the latest version of the

companion app and returns the possibility of attacking this

IoT device. Figure 5 provides a comprehensive overview of

the framework’s architecture.

Old Versions Downloader. In our earlier analysis, we down-

loaded older versions of apps from the Wandoujia app market.

However, we discovered that Wandoujia discontinued the

service for accessing historical versions on June 15, 2023. To

overcome this challenge, we have proposed a solution.

We developed a fundamental information extractor. It can

extract essential information about the APK, such as package

name and version code. First, we need to decompile the APK

using Androguard’s built-in capabilities. Once decompiled,

locate the AndroidManifest.xml file within the extracted files.

Within this XML file, it can easily identify the package

name and version code attribute. After extracting the attribute,

we turn to AndroZoo, which offers a substantial CSV file

(over 2.7GB compressed) containing more than 23 million

records, with fields like “pkg_name” and “vercode”. These

fields represent the name of the Android Package and the

version code, respectively.

To proceed with our analysis, we filter out entries in the

CSV file that share the same package name as the new version

of the app but have different version codes. These entries

correspond to the older versions we are interested in, and

we can download the old versions through the API provided

by Androzoo. By employing this approach, we can continue

our research on the historical versions of the apps, even after

the discontinuation of the service by Wandoujia. This method

allows us to gather valuable data and insights and explore the

evolution and changes in these companion apps over time.

OTA Analysis. After resolving the issue of downloading old

versions of apps, we are confronted with another critical ques-

tion: to determine whether these older versions of apps can

still effectively control IoT devices. This matter is particularly

significant because if certain IoT devices lack OTA update

capabilities, it implies that older versions of apps can still be

used to control these devices. Consequently, any vulnerabilities

discovered within these apps can potentially be exploited to

launch attacks on IoT devices.

To verify the OTA capability of these apps, we gathered

OTA update solutions from major chip manufacturers and

utilized the Androguard tool to extract and analyze UUIDs

and DFU libraries within the apps. If we fail to identify any

OTA-related data in these different versions of the apps, we

can deduce that the corresponding IoT devices do not possess

OTA capabilities.

The difficulty in obtaining IoT firmware due to the reluc-

tance of major manufacturers to provide firmware downloads

poses a challenge in analyzing IoT device security. To aid

security developers in conducting a thorough analysis of IoT

device security from the firmware, our tool can automatically

extract the firmware of IoT devices (if available) from APKs,

provided we find that the corresponding IoT devices have OTA

capabilities in the app. This is because some manufacturers

package their firmware within APKs for device upgrades.

322

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 02,2024 at 08:39:30 UTC from IEEE Xplore. Restrictions apply.

New Version

Input Extract Search Filter Out

Old Version

Vulnerability DetectOutputOutputOTA Check

Androguard AndroZoo Dataset

Result Report

Fig. 5: Analysis Flow

Using this feature, we successfully extracted 966 firmware

images from 11,045 BLE-enabled IoT apps. Through this

research and tool development, we aim to provide convenience

in analyzing IoT device security and enable a more compre-

hensive assessment of their safety.

Mis-configurations Detection. To ensure the security of these

devices is crucial to prevent potential attacks and protect

user data, BLE specifications [3] provide security guidelines

for data encryption, authentication, and authorization during

communication. Unfortunately, if developers fail to adhere to

these specifications, it can introduce security vulnerabilities in

IoT devices. In our framework, we incorporate the detection

process for misconfigurations in BLE apps. We could detect

static Bluetooth MAC address or UUIDs (can be abused

for device tracking), insecure pairing method, plaintext data

transmission, and so on. For example, a previous work BSC-

Checker [25] can be applied in our framework to identify the

above issues.

Using such tool, IoT developers can detect and fix security

weaknesses in their BLE apps, reducing attack surfaces and

protecting sensitive data transmitted over BLE connections.

VI. DISCUSSIONS

Lessons Learned and Suggestions. If the manufacturer’s

Bluetooth chip supports OTA functionality, we encourage

them to promptly develop firmware upgrade capabilities within

the app to fix and update the vulnerabilities present in the

firmware. However, if the Bluetooth chip does not support

OTA functionality, manufacturers need to take other measures

to mitigate the impact of vulnerabilities and protect user safety:

1) Device Recall. If feasible, manufacturers should consider

recalling hardware that cannot be upgraded. By retrieving

affected devices, manufacturers can reissue them with updated

secure firmware before reselling, ensuring that users receive

fixed versions.

2) Provide Risk Warnings. If the recall is impossible, manu-

facturers should provide detailed vulnerability descriptions and

potential risks to users, allowing them to understand potential

security threats and take necessary preventive measures.

3) Withdraw Old Versions of the App. Cease the use of old

versions of the app available on the Internet to prevent users

from using software versions containing vulnerabilities.

Limitations. Limitations of this paper include the following

aspects: (1) Unavailability of old app versions: although An-

drozoo contains a considerable number of apps, there is still a

possibility that the old version of a particular app may not be

found. (2) Implementation of code protection in old versions:

If code protection exists in older versions, it can also make

analysis more difficult. (3) Manual analysis: Code protection

techniques were identified through manual analysis, which

could potentially overlook certain code protection techniques

or lead to misjudgments.

VII. RELATED WORK

This section reviews previous work on BLE security and

IoT security. Zhang et al. [36] mentioned the security risks of

outdated Android apps. Inspired by it, our work demonstrates

the feasibility of analyzing firmware vulnerabilities of BLE

devices based on their outdated companion apps. Also, a series

of further investigations and measurements were conducted.

BLE Security. With the advancement of Bluetooth technology,

an increasing number of security research efforts are focusing

on BLE attacks and defense, including identity tracking attacks

that leverage the static UUIDs [37], the MAC address [35]

and the advertised packets [29]. To mitigate these attacks,

Wu et al. [33] proposed BlueShield, utilizing the BLE device

identity information carried by advertising packets to filter out

malicious packets from an attacker. Fawaz et al. [26] proposed

BLE-Guardian, which provides channel-level protection to

allow only authorized peripherals to connect with the protected

device. In other aspects of BLE security, Tschirschnitz et

al. [30] revealed a design flaw in the inconsistent association

model in the BLE pairing process. Taking advantage of this

fact, the method confusion attack can easily achieve an MITM

position of two BLE devices. Xu et al. [34] identifies design

flaws in the Bluetooth protocol and its implementation on

Android systems.

IoT Security. In terms of IoT security, Wang et al. [31]

presents a platform to accelerate the discovery and analysis of

323

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 02,2024 at 08:39:30 UTC from IEEE Xplore. Restrictions apply.

vulnerable smart home IoT devices. Wen et al. [32] presents

FirmXRay, a static binary analysis tool, designed to detect

vulnerabilities in BLE firmware used in IoT devices. Chen et

al. [23] presents IoTFuzzer, an automatic fuzzing framework

that detects memory corruption vulnerabilities in IoT devices

without requiring access to their firmware images.

VIII. CONCLUSION

In this paper, we demonstrate the feasibility of analyz-

ing firmware vulnerabilities of BLE devices based on their

outdated companion apps. The insight is that BLE devices

usually lack firmware update capabilities. Additionally, we

give a series of concrete attack cases to show the security

risks existing in outdated companion apps. The measurement

results also confirmed that the lack of firmware updates is a

widespread phenomenon. To facilitate this analysis approach,

we implemented a framework, BLESecurAssist, which takes

an IoT app as input and retrieves its outdated version. Fur-

thermore, by integrating other analysis tools, BLESecurAssist

can further execute more targeted analyses.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful com-

ments. This work was supported by Taishan Young Scholar

Program of Shandong Province, China (No. tsqn202211001).

REFERENCES

[1] Androguard. https://github.com/androguard/androguard.
[2] Bluetooth Specification Version 4.0. https://www.bluetooth.com/specif

ications/specs/core-specification-4-0/.
[3] Bluetooth Specification Version 4.2. https://www.bluetooth.com/specif

ications/specs/core-specification-4-2/.
[4] CC2540 – Bluetooth Low Energy wireless MCU with USB. https://ww

w.ti.com/product/CC2540.
[5] CSR OTA Firmware Update. https://developer.qualcomm.com/forum/q

dn-forums/hardware/bluetooth-connectivity-iot/csr101x-product-famil
y/csr1010/software/34169.

[6] CSR OTA Firmware Update. https://developer.qualcomm.com/qfile/34
081/csr102x_otau_overview.pdf.

[7] Cypress OTA Firmware Update. https://github.com/Infineon/airoc-con
nect-android.

[8] ESP OTA Firmware Update. https://github.com/espressif/esp-iot-solutio
n/tree/master/examples/bluetooth/ble_ota.

[9] JADX. https://github.com/skylot/jadx.
[10] Nordic Secure DFU Protocol. https://github.com/NordicSemiconductor

/Android-DFU-Library.
[11] NXP OTA Firmware Update. https://www.nxp.com/docs/en/user-guide

/UM10993.pdf.
[12] Realtex OTA Firmware Update. https://www.realmcu.com/en/Home/Dn

lDocuments/b83e55e7-72d0-41c1-9c3e-7639918bd176?t=2.
[13] Renesas OTA Firmware Update. https://www.renesas.com/eu/en/docu

ment/apn/gattbrowser-android-smartphone-application-instruction-man
ual-rev102.

[14] Renesas OTA Firmware Update. https://www.renesas.com/jp/ja/docume
nt/apn/firmware-update-ble-radio-ota.

[15] Silicon OTA Firmware Update. https://www.silabs.com/documents/pub
lic/application-notes/AN984-Implementing-Over-the-Air-Firmware-U
pgrade.pdf.

[16] STM OTA Firmware Update. https://github.com/STMicroelectronics/Bl
ueSTSDK_Android.

[17] STM OTA Firmware Update. https://www.st.com/resource/en/applicati
on_note/an5247-overtheair-application-and-wireless-firmware-update-f
or-stm32wb-series-microcontrollers-stmicroelectronics.pdf.

[18] Telink OTA Firmware Update. https://github.com/Ai-Thinker-Open/Te
link_825X_SDK.

[19] The SoCs support OTA updates. https://novelbits.io/how-to-choose-ble
-module-for-your-project/.

[20] TI Android Module for Over Air Download. https://git.ti.com/cgit/simp
lelink-ble-oad-android/simplelink-ble-oad-android.

[21] Wandoujia. https://www.wandoujia.com/about.
[22] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:

Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16, 2016.

[23] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018, 2018.

[24] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen,
X. Wang, and K. Zhang, “Understanding android obfuscation techniques:
A large-scale investigation in the wild,” in Security and Privacy in
Communication Networks - 14th International Conference, SecureComm
2018, Singapore, August 8-10, 2018, Proceedings, Part I, 2018.

[25] J. Du, F. Xu, C. Zhang, Z. Zhang, X. Liu, P. Ren, W. Diao, S. Guo, and
K. Zhang, “Identifying the BLE misconfigurations of iot devices through
companion mobile apps,” in 19th Annual IEEE International Conference
on Sensing, Communication, and Networking, SECON 2022, Stockholm,
Sweden, September 20-23, 2022. IEEE, 2022, pp. 343–351. [Online].
Available: https://doi.org/10.1109/SECON55815.2022.9918597

[26] K. Fawaz, K. Kim, and K. G. Shin, “Protecting Privacy of BLE
Device Users,” in Proceedings of the 25th USENIX Security Symposium
(USENIX-Sec), Austin, TX, USA, August 10-12, 2016, 2016.

[27] X. Jin, S. Manandhar, K. Kafle, Z. Lin, and A. Nadkarni, “Understanding
iot security from a market-scale perspective,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, 2022.

[28] D. M. Junior, L. Melo, H. Lu, M. d’Amorim, and A. Prakash, “A study of
vulnerability analysis of popular smart devices through their companion
apps,” in 2019 IEEE Security and Privacy Workshops, SP Workshops
2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp.
181–186. [Online]. Available: https://doi.org/10.1109/SPW.2019.00042

[29] A. Korolova and V. Sharma, “Cross-App Tracking via Nearby Bluetooth
Low Energy Devices,” in Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy (CODASPY), Tempe, AZ,
USA, March 19-21, 2018, 2018.

[30] M. von Tschirschnitz, L. Peuckert, F. Franzen, and J. Grossklags,
“Method Confusion Attack on Bluetooth Pairing,” in Proceedings of
the 42nd IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, USA, 24-27 May 2021, 2021.

[31] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the mirror:
Evaluating iot device security through mobile companion apps,” in 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, August 14-16, 2019, 2019.

[32] H. Wen, Z. Lin, and Y. Zhang, “FirmXRay: Detecting Bluetooth Link
Layer Vulnerabilities From Bare-Metal Firmware,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS), Virtual Event, USA, November 9-13, 2020, 2020.

[33] J. Wu, Y. Nan, V. Kumar, M. Payer, and D. Xu, “BlueShield: Detecting
Spoofing Attacks in Bluetooth Low Energy Networks,” in Proceedings
of the 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), San Sebastian, Spain, October 14-15, 2020, 2020.

[34] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “BadBluetooth: Breaking
Android Security Mechanisms via Malicious Bluetooth Peripherals,” in
Proceedings of the 26th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, California, USA, February 24-27, 2019,
2019.

[35] Y. Zhang and Z. Lin, “When good becomes evil: Tracking bluetooth low
energy devices via allowlist-based side channel and its countermeasure,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November
7-11, 2022, H. Yin, A. Stavrou, C. Cremers, and E. Shi, Eds., 2022.

[36] Y. Zhang, J. Weng, J. Weng, L. Hou, A. Yang, M. Li, Y. Xiang, and
R. H. Deng, “Looking back! using early versions of android apps as
attack vectors,” IEEE Trans. Dependable Secur. Comput., vol. 18, no. 2,
pp. 652–666, 2021.

[37] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic Fingerprinting of
Vulnerable BLE IoT Devices with Static UUIDs from Mobile Apps,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS), London, UK, November 11-15, 2019,
2019.

324

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 02,2024 at 08:39:30 UTC from IEEE Xplore. Restrictions apply.

